
Network Anomaly Detection With Graph Neural Networks

Group 21

Emily Hannon

Nicholas Lannon

Gustavo Nazario Perez

Santiago Rodriguez

Landon Russell

Mukundh Vasudevan

Sponsor: Branden Stone (Georgia Tech Research Institute)

Table of Contents

1. Executive Summary...1

2. Introduction..2

2.1 Project Identification...2

2.2 Project Significance.. 3

2.3 Individual Motivations and Ideas.. 4

2.3.1 Emily Hannon... 4

2.3.1.1 Motivations...4

2.3.1.2 Ideas...6

2.3.2 Gustavo Nazario Perez... 7

2.3.2.1 Motivations...7

2.3.2.2 Ideas...8

2.3.3 Landon Russell.. 10

2.3.3.1 Motivation.. 10

2.3.3.2 Ideas... 11

2.3.4 Mukundh Vasudevan.. 12

2.3.4.1 Motivations...12

2.3.4.2 Ideas... 13

2.3.5 Nicholas Lonnon.. 14

2.3.5.1 Motivations...14

2.3.5.2 Ideas... 15

2.3.6 Santiago Rodriguez.. 17

2.3.6.1 Motivations...17

2.3.6.2 Ideas... 18

2.4 Societal Impacts...20

2.4.1 National Security.. 20

2.4.2 Other Actors.. 21

2.4.3 Public Safety and Economy.. 21

3. Project Characterization..24

3.1 Objectives and Goals...25

3.2 Specifications and Requirements...27

3.3. Concept of Operations..28

4. Design Documentation.. 32

4.1 Research and Investigation.. 32

4.1.1 Networks..33

4.1.1.2 Packet Payload.. 33

4.1.2 UNSW-NB15 Dataset..35

4.1.2.1 Features...37

4.1.3 Simulation Environment..45

4.1.4 Neural Networks..45

4.1.5 Convolutional Neural Networks (CNNs)................................. 50

4.1.6 Graph Theory..53

4.1.6.1 Graphs...53

4.1.6.2 Neighborhoods and Connectivity..57

4.1.6.3 Adjacency Matrices and Lists...58

4.1.7 Graph Neural Networks (GNNs)... 59

4.1.8 Tools for Graph Neural Networks..66

4.1.8.1 Connectedness Ratio..66

4.1.8.2 Basic Overlap Statistic..68

4.1.8.3 Sorenson Overlap Statistic..69

4.1.8.4 Katz Index..70

4.1.8.5 Katz Centrality.. 71

4.1.8.6 Laplacians.. 72

4.1.8.7 Cut..74

4.1.8.8 Ratio Cut..75

4.1.8.9 Volume Cut...76

4.1.8.10 Encoder-Decoder... 77

4.1.8.11 Loss Function.. 79

4.1.8.12 Tensor Decomposition.. 80

4.1.8.13 Adjacency Tensor...81

4.1.8.14 Multi-Relational Data and Knowledge Graphs......................... 83

4.1.9 Anomaly Detection...83

4.1.10 Dynamic Graphs.. 97

4.1.10.1 Loss Function.. 101

4.1.10.2 Short-Term Dynamic Interests... 101

4.1.10.3 Long-term Static Interests.. 102

4.1.10.4 Interactional Representation..102

4.1.10.5 Relational Graph Aggregation...103

4.1.10.6 Latent Factor of User and Item...103

4.1.11 Python Libraries... 103

4.1.11.1 Pytorch.. 103

4.1.11.2 Numpy...113

4.1.11.3 Sci-kit Learn... 115

4.1.11.4 Pandas...121

4.1.12 Packet Capture.. 123

4.1.12.1 PCAP Parser.. 124

4.1.13 GNN Frameworks... 126

4.1.13.1 Graph Convolutional Networks (GCN)..................................126

4.1.13.2 GraphSAGE (Graph Sample and Aggregation)...................... 128

4.1.13.3 Graph Attention Networks (GAT):....................................... 129

4.1.13.4 ChebNet (Spectral-based Graph Convolutional Network):...... 132

4.1.13.5 Graph Isomorphism Network (GIN):................................... 134

4.1.13.6 Message Passing Neural Network (MPNN):...........................136

4.1.13.7 Optimal Function Choice... 139

4.1.14 Random Forest.. 144

4.1.15 One Hot Encoding.. 151

4.2 Design Summary.. 153

4.3 Design Description.. 153

4.3.1 Tools... 153

4.3.1.1 VS Code... 153

4.3.1.2 Cluster... 154

4.3.1.3 Github..154

4.4 Production Plan.. 155

5. Conclusions... 157

5.1 Characterization of Results...157

5.2 Summary of Project.. 159

6. Administration...162

6.1 Expectation Outline... 162

6.2 Product Backlog..165

6.3 Milestones... 166

6.4 Finances... 169

7. Acknowledgements... 170

7.1 Sponsor Assistance... 170

7.3 Bibliography...171

1. Executive Summary

Beginning this project, our goal was to use Graph Neural Networks

(GNNs) to detect anomalies in cybersecurity power grid scenarios and to

create a new GNN that detects graph anomalies more accurately and/or

efficiently by the end of our project. By the end of the project, we

successfully created a GraphSAGE GNN that successfully detects some

common cyberattacks and their categories.

A GNN is a Graph-based neural network that takes a graph as input

and outputs some anomaly detection about the graph. “Graph anomalies are

patterns in a graph that do not conform to normal patterns expected of the

attributes and/or structure of the graph.” [1] The detection of anomalies for

power grid scenarios is crucial as it ensures the reliability and security of

critical infrastructure.

Power grid networks have many intricate relationships that can make

them challenging to model. For example, fault propagation requires us to be

certain of all connections between components and how one component can

destroy the entire grid. Due to there being many complex interactions,

traditional methods of anomaly detection, such as rule or clustering-based

detection, fall short when trying to complete these tasks.

We set up a preliminary environment for running a simulation from the

Network Attack Testbed In [Power] Grid (NATI[P]G) [2], and it is our hope

that the final product will be tested on the fully on NATI[P]G data by future

teams once the simulation has been fully developed. However, our initial

tests took place on the older UNSW-NB15 Dataset [3], which is in the form

of CSV files and can be downloaded and experimented on more quickly. The

1

hope is to develop technology that will improve Intrusion Detection Systems

for distribution power grid networks by leveraging the networks’ graph

structure through the use of GNNs. This will open up doors for more

advanced and adaptive anomaly detection systems, specifically those using

Graph Neural Networks.

2

2. Introduction

2.1 Project Identification

Our team developed a graph neural network based on an extension of

the current cutting-edge. As stated in the summary, our sponsor has given

us power grid data to work with in order to detect anomalies in cyberattack

scenarios. Improvements in this area will be extremely helpful. As current

technology improves and advances, the United States power grid has

become more susceptible to digital attacks with the advent of the Smart

Grid.

According to the U.S. government, there are several advantages to

developing a smart power grid which include: “more efficient transfer of

electricity,” “quicker restoration of electricity after power disturbances,”

“reduced operations and management costs for utilities, and ultimately lower

power costs for consumers,” “reduced peak demand, which will also help

lower electricity rates,” “increased integration of large-scale renewable

energy systems,” “better integration of customer-owner power generation

systems, including renewable energy systems,” “improved security.” [4]

Unfortunately, the implementation of a computerized power grid exposes our

power grid to the possibility of cyberattacks from vandals or even outside

organizations, threatening national security and safety.

As a team, we are motivated to improve cyberattack detection,

specifically in this area, through the use of a Graph Neural Network. This

neural network structure leverages the graph structure inherent to the smart

power grid itself. As engineers and computer scientists, we also find the

topic of Graph Neural Networks themselves interesting. Before beginning this

3

project, most of the team had never heard of a Graph Neural Network, so

our own intellectual curiosity in the technology and its potential to be applied

in different scenarios is another driving motivator for our group.

2.2 Project Significance

Digital communication networks have become integral in supporting

daily life in the 21st Century. The United States especially depends on these

to provide vital services to the nation, including our smart power grid.

Consequently, digital communication networks have become increasingly

relevant to national security. To prevent catastrophic failures, anomalies (like

those caused by DDoS, injection, and parameter change attacks) must be

detected quickly and with adequate description for repair. This project aims

to solve this problem by leveraging the power of graph neural networks to

take advantage of the graph structure inherent in digital communication

networks.

According to a 2016 report from the Idaho National Laboratory, there

were already many existing risks and vulnerabilities for cyber attacks on the

U.S. electric sector. [5] Some threat actors outlined in this report included

rogue individuals, hacktivists, terrorist groups, and countries such as Russia,

China, Iran, and North Korea. Attacks may threaten three types of energy

areas: production, transmission, and distribution. Our group can only

assume that this threat has increased as more of our power grid systems

have new computerized technology implemented for the previously outlined

purposes.

4

According to the U.S. Energy Information, around 72% of electric

utilities have “advanced (smart) metering infrastructure (AMI) installations.”

This number is slightly higher at 73% for residential meters, which vastly

outnumber the three other categories, which are commercial, industrial, and

transportation. [6] Since 2013, over double the amount of households have

adopted the advanced metering infrastructure (AIM). [7] As we will later

discuss, in a worst-case scenario, a successful cyberattack on a U.S. power

grid can result in death, and such a scenario must be avoided at all costs.

Any improvements in cybersecurity will protect citizens from attacks

originating both at home and abroad. Our group takes these threats very

seriously, and they are one of the driving motivators for our group. While

Graph Neural Networks are interesting in their own right, our project gains

new meaning through the application of this technology to a smart power

grid cyberattack scenario.

2.3 Individual Motivations and Ideas

2.3.1 Emily Hannon

2.3.1.1 Motivations

Personally, I am motivated to learn more about graph neural networks

and cybersecurity in general. I have a lot of experience in applied research

in other areas of machine learning, but I am looking forward to learning

more about these topics. I am currently performing research in multiple

applied artificial intelligence areas. One of my research projects is focused

on Genetic Algorithms, which is a survival-of-the-fittest machine learning

approach that copies the process of evolution in real-life biology.

5

During this project, we are looking at the application of a Genetic

Algorithm to predict the location of G-Quadruplex structures with the aim of

locating promoters and detecting transcription start sites in DNA using

regular expression motifs.

I am also working on a thesis with the SENSEable Design Lab, which

focuses on emotion prediction and team evaluation using multimodal input

and machine learning. Additionally, my research group abroad works with

the CERN ATLAS project to apply neural networks to create a more accurate

reconstruction of the mass of the Higgs-Boson particle. Recently, we have

been experimenting with the use of Population-Based Training [8], a

hyperparameter tuning algorithm first posed by Deepmind that uses a

genetic algorithm approach to training neural networks. While interesting

from a physics perspective, this project is also interesting from a computer

science perspective since there is little diversity in our data, making it

extremely easy to overfit on.

I think this project will be interesting because it touches on topics I

know very well and also topics that I still have a lot to learn about. I do not

have much experience in the cybersecurity area, so it is going to be an area

that I will be able to learn and grow in during the duration of this project.

While I have a good amount of experience working on research projects in

the AI and machine learning areas, I do not have any experience working

with graph neural networks specifically. Overall, I am familiar with scientific

and research methodologies that I believe will lead our team to success. I

am also motivated on the research side of things to have a published paper,

if the opportunity arises.

6

2.3.1.2 Ideas

In terms of where the project is headed, we should start with a

literature review to help us brainstorm. During this process, we will be able

to gather and discuss ideas as a group. Based on our first meeting with our

sponsor and research mentor, our goal is to find the best and most

cutting-edge graph neural network. Our sponsor has recommended multiple

resources, including Papers With Code and Google Scholar. I have also

suggested using arXiv in order to make the most of our literature review

process.

Our sponsor has also suggested one paper as a starting point that

gives a bit of an overview of the field of graph anomaly detection using

graph neural networks as it stands today. [1] Looking at the papers that cite

this and the papers that it cites will be a great starting point to read up on

this field. We have also been provided with a data simulator, so this would be

a great time to get that code ready and begin to run it. It would also be

prudent to look at the second data set we have been provided with (which

we will not be testing on) in order to get an idea of the data we are working

with since it will be similar to our result from the simulation.

Once we have completed our literature review process, we need to

brainstorm any extensions to this paper that can improve the neural

network. During this process, we will need to plan our own neural network in

detail and come up with an outline of what we expect to accomplish for the

next semester. This includes code to be written and what experiments we

plan to perform and run. Based on this planning, we may also need to

request additional hardware to run our experiments on after we complete

the coding.

7

After these steps, we can begin the implementation of the neural

network and testing. At the end of the senior design project, we should have

a report or paper written about our final results. As a stretch goal, it would

be a fantastic opportunity for our entire team to turn our project into a

published paper or part of a paper with the help of our sponsor.

2.3.2 Gustavo Nazario Perez

2.3.2.1 Motivations

This project piqued my interest due to combining machine learning

with graph theory. I have taken courses on both of those topics individually

at UCF and am looking forward to seeing how these concepts can be

connected with Graph Neural Networks. As I work on this project with my

team, I want to become more familiar with the math and processes of neural

networks. Though I currently understand most of the ideas related to neural

networks, I want to improve my clarity and remove any black boxes that still

exist in my head. I believe that GNNs will be useful for this as I will be

expanding upon my knowledge to learn something more complex, which will

require me to have a strong understanding of the basics.

After talking with our sponsor, I found even more reasons to be excited

to work on this project. A large process of our work is going to be

performing literature reviews and becoming familiar with the state-of-the-art

GNNs, specifically the ones used for anomaly detection. This is a skill that I

find essential to any computer scientist, and this project enables us to use it.

With technology rapidly changing, it is important to stay on top of

discoveries and new ideas.

8

One of my personal goals in terms of my career is to work for a

company that does work in the biotech industry. I find that it makes my

work feel more impactful and is an interesting blend of computer science and

biology. Learning about GNNs and how they can be used in anomaly

detection is something that I believe is transferable to a career in the biotech

industry.

Another essential part of this project is the understanding of networks

and security. I do not have any aspirations of working in the cybersecurity

field, but that is mainly because of my lack of exposure to it. I am hoping

that this project will give me a better grasp of what cybersecurity is and how

machine learning can be incorporated to increase communication safety

amongst networks. UCF puts a strong emphasis on cybersecurity, likely

because many companies in surrounding areas are in the defense industry,

so knowing that field can prove to be beneficial.

In terms of general motivations, I believe that working in a team will

be very helpful for my future as a computer scientist. I look forward to

bettering my communication skills, learning how to hold both myself and

others accountable in a team-focused way, and being able to communicate

with others to solve problems.

2.3.2.2 Ideas

This project has two main components: the GNNs and the

cyber-physical systems (networks) whose anomalies we are detecting. I

believe that to succeed, we need to ensure that everyone has a clear

understanding of what the project is and how GNNs could solve it. Since

9

none of the group members have previous experience with GNNs, that is the

first thing that will be tackled. As I mentioned in the motivation session, a

large part of this project will deal with performing literature reviews. These

will be extremely important to familiarize ourselves with concepts that we do

not understand (the first being GNNs), as well as go deeper into our

knowledge of concepts we do understand. Our sponsor has provided us with

many resources to go about this effectively.

Once we have become familiar with both the structure of the networks

and GNNs, we should begin to look into what defines an anomaly. There are

various types of anomalies in a graph, such as node anomalies and edge

anomalies. We can define an MVP from one of those and move towards

testing other anomalies.

The first step in most, if not all, machine learning projects is preparing

the data. Our sponsor has provided us with various Pcap files that we will

use to identify potential input features to associate with our graph. The

length of the packet or the type of protocol used between connections are

both examples of potential input features.

Part of our goal for this project is to produce something that hasn’t

been done yet and outperform current state-of-the-art GNN architectures.

An example of this that the team has discussed is how we should take into

account loops. Current architectures explore a depth that does not exceed

the graph diameter to not look at data that we already have, but that may

miss a node that is connected to itself. My role on previous teams has

varied depending on what type of project I am working on, but I would say

that I possess a good ability to creatively identify edge cases such as the

one above, and I look forward to solving those within this project.

10

2.3.3 Landon Russell

2.3.3.1 Motivation

A lot of my motivation for our project stems from the chance to learn

and explore a relatively different field of programming experience than I am

used to. In my current internship and past school experience, I have been

exposed to many different topics in computer science, but have never gone

this deep into cybersecurity topics that have a large amount of mathematical

components to go along with it. When working with graphs in the

programming contest class I took last year, as well as practicing for technical

questions like leetcode, I have always wondered how they could be applied

practically in the real world. I am excited to see how they work in the sense

of graph neural networks and how they work to detect anomalies in data. So

far, from initial research as well as discussing the details of the project with

my team and our sponsor, it has made me even more excited to get started

on our task laid out by the sponsor.

The cybersecurity field is something I have wanted to explore more,

and I feel like a task involving understanding cutting-edge systems and

attempting to produce something more efficient in regards to something as

complex as graph neural networks is a great way to put my foot forward.

Even if I don't continue on to pursue a position in cyber security for my

career, it is still always a great opportunity to expose myself to as many

options as possible to find what I enjoy the most within the field

In a practical sense, this is also a great opportunity to possibly pursue

a publication as well as have a great project to add to my resume. I

personally want my resume to include advanced projects that I am

passionate about. Having a passion that I see myself having in our GNN can

11

give me plenty to talk about when applying to certain positions that will find

something like what we are doing with it interesting. Having a publication in

something like this is one thing that I have always wanted to attempt, and

this could be a chance for that as well. Both having a publication and having

another strong project for my resume will play a role in boosting my

professional confidence and overall confidence in the realm of my Computer

Science career.

2.3.3.2 Ideas

Since the concept of our project is one that has been explored in the

past, and the concept of graph neural networks being used for anomaly

detection isn't new, it is very important that we focus on getting a broad

view of similar material that has already been completed. This means that

extensive research and planning are necessary in order to reach the goal

that the sponsor expects of us. To start, the documents sent by our sponsor

as well as other sources we find while doing our own research, will greatly

enhance our ability to understand the content we are working with.

Reading extensively through these sources will allow us to know what

tools we have at our disposal that can assist us in implementing, as well as

understanding which of these tools are open to expanding on in order to

make our completed Graph Neural Network unique and better than the

cutting edge technology that is already being implemented by different

companies to this day. Basing our initial investigation on a paper that our

sponsor said was a good starting point is the best idea. The paper gives an

overall view of the current status and challenges of graph neural networks

that are implemented today.

12

Following research and having a strong foundation and knowledge of

graph neural networks, it is important to have a set plan and guidelines that

we will follow to complete our goal. We need to know what is going to be

coded and have a physical implementation, as well as what ideas we will

continue to look over and explore throughout the semester. All of this will be

a part of what goes into our paper to complete by the end of the semester.

From the research I have gathered, my high-level idea of how we

could start is to first gather and prepare our data. Thankfully, our sponsor

has provided us with data sets that can be implemented. Next, we need to

create the overall architecture of our GNN. This can be accomplished by

having multiple Graph Convolutional Layers, which our sponsor briefly

explained to us. With this, we can decide the number of layers as well as

what activation function we can use. After, we have to train the Graph Neural

Network we have created. With this, we will then use the GNN model to

make predictions and update the model’s weight based on loss. Finally, we

will evaluate the model.

2.3.4 Mukundh Vasudevan

2.3.4.1 Motivations

My motivation for this project is to learn more about graph neural

networks. As I have not learned a lot about neural networks in general, this

project felt like a good opportunity to learn about graph neural networks.

Another thing that intrigued me about this project was the cybersecurity

aspect, as I have experience in networking and cybersecurity.

13

This project originally piqued my interest because, at the time, I was

working on getting a Suricata intrusion detection system on my home

network. This intrusion detection system is a traditional system that uses

conventional computing to find anomalies in the network. When I saw there

was a project about finding those anomalies with graph neural networks it

was a great fit.

My interest in the project drastically increased after talking to our

sponsor about graph neural networks. He put a lot of emphasis on creating a

state-of-the-art graph neural network and the reasoning for why we should.

This will be a great improvement to cybersecurity as well as researching

graph neural networks.

I have lots of experience in networking, so I believe I have lots of

experience in reading the network topology and understanding it thoroughly.

I have also spent a lot of time understanding packet capture (PCAP) files, so

I think I can bring a lot to the table. Being able to understand this raw

network data makes it so that I can understand.

I know that this project is essentially creating state-of-the-art network

security. As I would like to get into a cybersecurity career, this seemed the

best project to do. The GitHub that was given showed a simulation network

that is what we are going to be using. After looking at this repo, I liked the

network that it had, so I wanted to join this project.

2.3.4.2 Ideas

Finding anomalies in a graph neural network has already been created.

Because of this fact, we have to be able to differentiate our project, making

14

ours better than what is currently state of the art. To know how anything

works and what currently exists, a literature review needs to be conducted

to understand what is going on.

First, I need to get knowledge of graph neural networks and to do

that, we have gotten resources from our sponsor to be able to learn this.

There are many frameworks for graph neural networks, but we will be using

pytorch and pytorch graph neural network frameworks.

To aid with the fact that we need to do a literature review, our project

sponsor gave us links to papers which include papers from papers with code,

Google Scholar, and a paper about the state of anomaly detection using

neural networks. This told us about what ways these neural networks were

created and the many ways we could make them.

Another part of the project is to understand the networking, the packet

capture files, and the security based on this. The network topology that we

will be using is the simulation created by Pacific Northwest Laboratories. We

will need to understand the full network to make the ideal graph to be able

to create good data for the neural network.

2.3.5 Nicholas Lonnon

2.3.5.1 Motivations

My main motivation for this project is to get a passing grade. I would

also like to get a better understanding of how neural networks work. There is

a lot of math that comes into optimizing neural networks and a lot of

research that is needed to do that math, and this project seems like it will

15

rely heavily on that research. I hope to develop a good enough

understanding of how neural networks work to the point where I can get a

job. I also hope that this project will look good on my resume.

I am interested in neural networks because they seem pretty neat. I

could give chatGPT health-related symptoms, and it would probably

diagnose the cause and a solution faster and better than a doctor, and I

don’t need to go anywhere.

I’ve mainly messed around with natural language processors, but I

would like to expand my knowledge on the subject. I’ve never worked with

Graph Neural Networks before, but I am interested in learning more about

them and implementing them. I’ve made my own multi-attention models,

but I have never had a GPU to make something interesting.

2.3.5.2 Ideas

We are taking Propagation Code Analysis Program data and using that

data to detect anomalies using Graph Neural Networks. There are different

architectures of GNNs, and depending on the architecture of our Graph

Neural Networks will affect how we format our PCAP data as a graph.

One Graph Neural Network type architecture we can use is a Graph

Convolutional Network. It uses a multilayer perceptron like a Convolutional

Neural Network, meaning that it has layers of hidden states that it uses to

generate an output from input. But its hidden states on each layer

correspond to a node on the network, and each node is represented by some

value. Each hidden state is equal to the ReLU of the summation of each

adjacent node in a function. This function is defined as the product of the

16

corresponding hidden state in the last layer multiplied by a weight that is

changed by backpropagation over the root of the product of the connected

nodes. The issue with this Graph Neural Network is that it doesn’t take into

account the properties of the edges other than the nodes that it connects.

A Graph Neural Network is similar to Graph Convolutional Networks in

how it connects the different layers of the hidden states between their

corresponding adjacent nodes, Message-passing neural networks are able to

take into account edge properties. It has a hidden state in each layer that

corresponds to each of the nodes like in a Graph Convolutional Network, but

it accumulates the sum of the adjacent nodes by passing the previous

hidden layer of the current node and adjacent node along with the edge

properties between the corresponding node into a messenger function. It

then takes the sum returned from that messenger function and passes it into

the vertex update function along with the corresponding hidden state on the

previous layer. The messenger function acts as an accumulator, and the

vertex update function acts like an activation function

Like a Convolutional Neural Network input is fed into these hidden

states to generate a predicted value, and if the model is training, this

predicted value is compared to the actual value and backpropagation

through the weights of the model to generate a value closer to the actual

value.

Another more modern Graph Neural Network is a Graph Transform

Network. This version, unlike the other two, is based on the principles of the

Transformer Model, which is typically used for Natural Language Processing.

instead of words, it takes in nodes and, optionally, edges of graphs. Unlike

Transform Models in Natural Language Processing, the Graph Transform

17

Network in each of the attention heads compares each of the adjacent nodes

with the node that it is looking at and pools them into a sum.

2.3.6 Santiago Rodriguez

2.3.6.1 Motivations

I am motivated to learn more about graph neural networks and how

they combine both machine learning tools with graph theory. Beyond my

intellectual curiosity to know how graph neural networks operate, I am also

interested in seeing how these technologies can be applied to the real world.

Since this project will be looking at applications of machine learning in the

cybersecurity space, I believe this project will be a great experience to

explore the kind of network and security problems being posed and see how

useful machine learning and graph theory are at solving these problems.

This project, which aims to study neural networks and graph theory in

the context of network security, would also parallel my other research

project in computer science. In particular, over the summer, I worked on a

project studying the transformations that go between continuous spaces

(like the real line) and programs (like lambda calculi). I aimed to uncover

what it would mean to say that a function from reals to programs is

continuous, and moreover, what it would mean to say that the function is

differentiable.

This would have applications to the study of neural networks since one

can think of the training algorithms as transforming programs (in this case,

neural networks) into numbers (in this case, the error cost) and then

minimizing the cost. Knowing what these transformations look like and the

18

kind of properties they have would prove very useful in giving a rigorous

analysis of how neural networks work. Using tools from domain theory,

representation theory, and topology, I was able to present suitable

definitions for continuous transformations and a class of continuously

differentiable transformations that do not require imposing a linear structure

on the space of programs.

In either case, both research projects require a study of neural

networks and how they function in order to improve their functionality for

specific tasks. For this senior design project, being able to come up with an

algorithm that can reliably detect network anomalies is part of the reason I

joined this project. The other part, given that this is a research project, is to

hopefully end with a peer-reviewed publication so others can see what we’ve

done.

2.3.6.2 Ideas

Since this is a research project, first and foremost, doing a literature

review is essential to get an idea as to how the problem has been framed

and dealt with in the literature, what tools are available, and what are the

pros and cons of each approach. Even so, I already have some idea as to

how to approach the problem of identifying network anomalies.

Since the goal is to detect network anomalies using neural networks,

we first need to define and collect the data that will be used to train our

network. Moreover, we need a way to standardize this data so that

arbitrary-sized communication networks can all be analyzed using a single

algorithm instead of having to retrain the model for each possible network

19

architecture. And lastly, we need a method of training the neural network so

that it reliably converges to a suitably optimal solution.

In regards to collecting the data, our sponsor has already provided us

with resources to synthesize network attacks via an open-source simulation

project. In addition, there are standard databases for cybersecurity

researchers to work on, which we will be utilizing.

In regards to standardizing the data, the graph structure itself need

not be explicit in the data being passed. By the nature of how graph neural

networks work, the number of update iterations corresponds to how large of

a vertex neighborhood one considers when making predictions. Thus, the

only data standardization that needs to be done will be the metadata

associated with each node. We could take the full packet data recorded

during network traffic and use that as the metadata for each node. Since

time is an important factor in identifying network anomalies, one possible

solution would be to only consider a fixed interval of time where we

determine duration by trying multiple intervals and comparing accuracy and

precision in identifying network anomalies.

Finally, in regards to training, we could use the standard gradient

descent algorithm with some optimizer like Adam. To calculate the gradient,

it may be easier to use an auto differentiation package than to calculate the

gradient by hand. Thus, this will lighten the workload if we ever choose to

change the underlying update function.

20

2.4 Societal Impacts

2.4.1 National Security

As discussed in the previous sections, there are serious humanitarian

consequences in the case of a highly successful cyberattack on the United

States smart power grid. In a worst-case scenario, a cyberattack on the

power grid could be considered an act of war. Actors like Russia, China, and

North Korea could easily sabotage an insecure power grid if our countries

ever engaged in a conflict or war. It is easy to imagine such an attack

damaging the defense systems and infrastructure in our nation. Some

experts have proposed that many of these countries are already capable of

inflicting debilitating damage to the United States power grid but only refrain

from doing so for political and peacekeeping reasons.

However, this issue does not only impact American national security.

One notable attack outlined in the report from the Idaho National Laboratory

mentions the December 2015 attack on the Ukrainian power grid, attributed

to a Russian military hacker group. [5] Since then, cyberattacks on the

Ukrainian power grid have only increased with the progression of the

Russo-Ukrainian war and continue to this day.

As modern countries transition to the smart grid system, they are

opening themselves up to increased sabotage of their infrastructure from

other nations. For this reason, it is important to protect our power grid and

other related systems from a cyberattack scenario in a national defense

context.

21

2.4.2 Other Actors

Besides other nations threatening the US power grid, it is worth

mentioning some other bad actors that may launch similar cyberattacks.

This includes terrorists, hacktivist groups, cybercriminals, and other fringe

groups. It is important to consider these organizations since they add to the

chaotic and dynamic landscape of the cybersecurity problem scope, where

technique, technology, and motivation can quickly change.

2.4.3 Public Safety and Economy

In cities that are not prepared, the most vulnerable people are those

who depend on energy to power hospitals or health-related technologies for

day-to-day use, including communication between first responders. Power

outages would negatively impact digital communication and the economy,

especially in an industrialized country with many white-collar workers who

rely on technology and power in order to complete work at their jobs.

Furthermore, the implications of a cyberattack extend beyond mere

disruption, as the type of outage, targeted system, and nature of the attack

could potentially result in lasting physical damage to the affected

infrastructure, particularly in the long term. This broader perspective

underscores the multifaceted and interconnected nature of cybersecurity

challenges.

Considering the integral role that power systems play in supporting

various critical infrastructures, such as water and sewage systems, the

repercussions of a cyberattack on the power grid can have cascading effects,

impacting essential services that rely on a stable and secure power supply.

22

Recognizing these interdependencies emphasizes the importance of

comprehensive cybersecurity measures to safeguard not only the targeted

systems but also the broader network of interconnected infrastructures vital

to the functioning of the United States.

A lack of access to clean drinking water or operational sewage systems

could become a massive issue in a long-term power grid failure. Any

combination of these socio-economic issues could ultimately lead to social

unrest in a long-term power grid outage. It is safe to say that such a

scenario would be catastrophic.

The significance of cybersecurity software capable of real-time attack

detection cannot be overstated, particularly in bolstering governments'

capacity to shield their citizens from the ramifications of power grid outages.

The potential advantages, especially for the U.S. government in the realm of

national security, are substantial. The ability to promptly identify and

respond to cyberattacks as they unfold is a critical aspect of fortifying the

power grid systems.

Consequently, our research endeavors stand to help advance current

technology for defending power grids against malicious cyber threats. By

contributing to the development of more robust and responsive

cybersecurity solutions, our work aligns with the broader objective of

enhancing the security posture of critical infrastructures, thereby

safeguarding essential services in society.

With increasing global reliance on networks and cyberphysical grids,

ensuring the security. This research will not only help efforts in cybersecurity

but will also contribute significantly to national security. Not only are we

23

looking to help immediate threats to also lay down a strong foundation for

future infrastructure.

24

3. Project Characterization

Our group has been tasked with creating a novel Graph Neural

Network architecture or enhancement for state-of-the-art network anomaly

detection. This project is sponsored by Branden Stone, and we are working

in collaboration with the Georgia Tech Research Institute (GTRI). We are

studying the network data transmitted between cyber-physical systems used

for infrastructure in the United States. The reasoning behind this is that

networks lend themselves nicely to be represented in a graph data structure,

with the components of the network being nodes and the data transmitted

being edges.

GNNs take a graph as their input and consider the graph structure by

looking at a specific node’s neighbors and the relationship between them.

With this architecture being the end goal of our project, our initial focus was

on creating simple models such as random forest and basic neural network

classifiers on packet data in order to become more familiar with our data.

This was supplemented with constant research on GNNs to make a

connection between our current and future works and prepare ourselves for

GNN implementation.

Our ideal final deliverable would be able to perform anomaly detection

using a simulation environment called Network Attack Testbed In [Power]

Grid (NATI[P]G) developed by Pacific Northwest National Laboratory (PNNL)

[2]. However, the PNNL is continuously developing this simulation

environment, and a stable release of this software has yet to be developed.

This environment produces simulated packet data and follows the same

structure as a packet capture (PCAP) file. For our initial proof of concept

25

classifiers, the UNSW-NB15 dataset [1] provided by UNSW Sydney was

used.

This dataset contains raw packet data and attack types gathered by a

Network Intrusion Detection System (NIDS). The main difference between

our original classifiers and the graph neural network lies in the fact that with

our original classifier, our focus is on individual packets, whereas our final

product will observe any subset of the packet data. This allows us to look at

the connection between packets which opens a new door to types of attacks

that can occur. This would be represented as the edge of a graph, and we

would use that to identify an anomaly.

Within GNNs used for anomaly detection, we eventually decided to use

the GraphSAGE architecture [35] as detailed in section 4.1.13.2 of this

document.

3.1 Objectives and Goals

In order for our team to successfully build up to a novel graph neural

network architecture for network anomaly detection, we divided our

objective into two major milestones. The first milestone focuses on

packet-level anomaly detection, that is, using only a single PCAP packet to

predict anomalous behavior. The second milestone focuses on network-level

anomaly detection, that is, using a suitably large time frame of PCAP data to

predict anomalous behavior.

For the first milestone, we developed a two-stage pipeline for

packet-level anomaly detection by the end of Senior Design 1 (December 3).

Specifically, the pipeline consists of (1) a decision tree classifier and (2) a

26

neural network classifier. The decision tree classifier looked at an individual

PCAP packet and categorized it as either normal or anomalous. Packets that

were labeled as anomalous are then fed into the neural network classifier.

The neural network classifier looks at an anomalously-labeled PCAP packet

and categorize it as one of the specific types of attacks. In particular, this

includes: distributed denial of service attacks, injection attacks, and

parameter attacks.

This first milestone is intended to teach us exactly what features in the

PCAP data are most relevant in anomaly detection. This also serveed as a

minimal working demo showcasing the utility of artificial intelligence models

in predicting network anomalies. The data we collect from this first milestone

then serves to inspire the design choice of the second milestone. The code

from this milestone did not make it into our final codebase as we began to

focus our effort on expressing work with the graph neural network and

obtaining a running simulation environment.

For the second milestone, we developed a graph neural network for

network-level anomaly detection by the middle of Senior Design 2. Based on

the relevant features identified in the first milestone via analysis and

domain-specific knowledge, we trained a graph neural network to

autoencode the communication network into embeddings that place normal

nodes within a specific threshold and anomalous nodes outside that

threshold. The hope is that focusing on the features identified in the first

milestone helped optimize the graph neural network in considering

packet-level anomaly discriminators while finding a suitable embedding to

encode the network activity.

27

As a stretch goal, we aimed to complete the project with a graph

neural network architecture that improves on the state-of-the-art in network

anomaly detection. Provided that our model works and there is sufficient

novelty/interest as determined by our sponsor, our team will author a paper

intended for publication. However, we did not reach this stretch goal in the

given time and this is an area where future teams may be able to contribute.

3.2 Specifications and Requirements

As we are working on a relatively large research and computer science

project, working with Jira in an Agile format has become a necessity.

Thankfully a couple of our team members are already familiar with the Jira

platform, and they were able to take on the responsibility of setting up the

Jira board and getting the rest of the group familiar with the platform and

concepts of sprints. This task seemed trivial at first, given that our project

scope did not have a very specific design, but it ended up making the task

setup much more complicated.

All tasks have been created as user stories, and they are assigned to

their designated epics, which were the following: Random Forest on UNSW,

Supervised Neural Network on UNSW, Graph Neural Network on UNSW, Sim

Environment Setup, and Research. Given that this is not a traditional

software project, user story delegation has been difficult since there is

significant overlap between tasks.

All the team members are worked on getting familiar with the

technology by completing similar small machine-learning projects and doing

individual research. Learning how to use Jira effectively for Agile project

management and laying out a strong foundation for how our project

planning should look moving forward was essential for a successful project.

28

Overall, the requirements for this project are (1) a database of

instances of network activity attacks, (2) a PCAP file parser for extracting

the packet data from these network activities, and (3) a graph neural

network that takes in the packet data and network structure and can

practically detect anomalous behavior. As this is a research project, the final

(weak) requirement is that the graph neural network should have made

noticeable improvements from state-of-the-art network anomaly detection

models.

In addition to these requirements, the specifications include: (1)

sourcing from the UNSW dataset and NATI[P]G simulator [2] to train our

models; (2) a Python script for parsing; and (3) a PyTorch implementation.

Additional cloud computing for network training would also greatly improve

the project as it would speed up training and provide a reliable tool for team

members to work on their individual parts. Our team was able to train on a

standard laptop PC. However, additional computing may be necessary for

future development.

3.3. Concept of Operations

Our project applied the GraphSAGE [35] graph neural network to a

simulated cyberattack scenario from a power grid to detect anomalies within

the system that could be potential attacks. As stated in the paper Graph

Anomaly Detection With Graph Neural Networks: Current Status and

Challenges: “Graph anomalies are patterns in a graph that do not conform to

normal patterns expected of the attributes and/or structures of the graph.”

[1]

29

Because of the nature of the graph structure, a graph neural network

is an ideal machine learning representation to use for a cybersecurity

scenario, with the graph anomalies becoming the attacks on the network

that we aim to detect. The graph structure itself is leveraged in order to

solve this problem. As our sponsor and research mentor specified, our neural

network models must be compatible with PyTorch, and we must test our

neural networks on simulated data from the Network Attack Testbed In

[Power] Grid (NATI[P]G) simulation. [2] Our sponsor has provided us with

the open-source simulation code, which is required to run in order to obtain

this data. [1]

Figure 1. Example of a graph neural network. [1]

The user is able to input data into our graph neural networks, and it

predicts anomalies based on this data. The application pipeline takes in

packet capture (pcap) files, analyzes the network, and detects anomalies

using graph neural networks. As a stretch goal, our team also planned an

integration of the pipeline code where the user will not interact directly with

the application, but they will get an alert when an anomaly is detected. This

is a potential goal for future teams. The anomalies that we detect are

30

outlined in the UNSW dataset and include distributed denial of service,

fuzzers, analysis, backdoors, exploits, generic, recon, shellcode, and worms.

With Cyber-physical infrastructure becoming more common in the

United States, the security of these systems is an increasingly important

concern. The commercial use for this is to improve Intrusion Detection

Systems for distribution power grid networks using state-of-the-art

simulators.

We used Python, including but not limited to the PyTorch package. Our

sponsor has recommended the use of other packages, such as Sci-Kit Learn

to begin to obtain a preliminary understanding of the problem we are trying

to solve. We also ran our cyberattack data simulation, Network Attack

Testbed In [Power] Grid (NATI[P]G), which is written in C++ and Python and

provided by The Pacific Northwest National Laboratory on GitHub.

(NATI[P]G) is a “co-simulation environment for distribution power grid

network using state-of-the-art simulators.” [2]

The repository can be located at https://github.com/pnnl/NATIG. The

simulation uses the language C++, and it uses the following libraries:

XInclude, cmake, helics, ns3, PParse, MemParse, PSVIWritter, Redirect, SAX2

Count, y-example-debug, SAX2Print, Xample-debug, XInclude, and idle. [1]

As previously mentioned, the team was able to obtain a working simulation

environment setup, but was unable to test and train on this data due to a

lack of a stable release from the team at PNNL.

31

Figure 2. Timeline representing previous anomaly detection Graph Neural

Network models. [1]

Other technologies we may used include Docker and Pip Package

Manager. We also used Box, which is a file-sharing platform that we will use

to store important documents throughout our project, including papers we

read and plan to incorporate into our own work. This technology was

selected by our research mentor, who also has access to our shared Box

space.

32

4. Design Documentation

4.1 Research and Investigation

Based on our first meeting with our sponsor and research mentor, we

recognized that our goal is to find the best and most cutting-edge graph

neural network. The group has successfully implemented the GraphSAGE

network. We hope that work of future teams incluse creating a new type of

Graph Neural Network that extends this network and implementation on the

Network Attack Testbed In [Power] Grid (NATI[P]G) simulation. [2] Our

sponsor recommended multiple resources, including Papers With Code and

Google Scholar. We have also used arXiv in order to make the most of our

literature review process. Our sponsor has also suggested one paper as a

starting point that gives a bit of an overview of the field of graph anomaly

detection using graph neural networks as it stands today. [1] Looking at the

papers that cite this and the papers that it cites was be a great starting point

to read up on this field.

Since this project is heavily centered around understanding what a

graph neural network is, how they are used, and what the cutting-edge

technology around them is, a lot of the early stages of this project revolve

around researching. Although it might not seem like physical contributions,

our sponsor agreed that this extensive research and comprehension is

absolutely necessary when moving into the implementation phase during the

second semester. Initially, our group wanted to understand three major

topics that contribute to implementing our Graph Neural Network in a

practical form, Graphs, Neural Networks as a whole, and Pytorch/ML

Implementation. Our sponsor provided us with documentation and resources

for all, starting with Neural Networks and how they will be used in our

33

project. Providing how each topic will apply to the overall project is just as

important as understanding the fundamentals.

4.1.1 Networks

With the main goal of the problem being to detect anomalies within

network intrusion systems, becoming familiar with a network and its

components is an essential part of the process. This helped us understand

our dataset and the features we planned to use during classification. A

packet is a data structure containing a header, payload, and trailer. The

header is composed of metadata related to the data in the packet. The

payload is the actual data within the packet. Our data specifically does not

contain a trailer because it is an IP packet.

4.1.1.2 Packet Payload

Packets can be used to create a network by using the devices that they

outline and the data transmitted between them. The most important

information contained within a packet as it relates to the UNSW-NB15 data is

outlined below. [3]

34

IP Address Numerical address assigned to any device connected

to the internet.

Port Number associated with protocol that sends or

receives data within a device.

Transport Layer

Protocol

Set of rules for devices to communicate. Ex: UDP,

TCP

State Current state of network. Ex: ACCEPTED,

CONNECTED, CLOSED

Transmission

Control Protocol

(TCP) Window

A rule that helps the device know how much data it

can handle.

Time To Live (TTL) The amount of time that a packet exists on a

computer before it is discarded in terms of how

many routers it passes through.

Load (bytes per

second)

The amount of data being transferred.

35

Packet Loss How many packets failed to get to the destination.

(typically represented as a percentage of total

packets)

Average Packet

Inter-Arrival Time

Metric that measures the average time between

packets arriving in succession.

Jitter A variation in the amount of time that it takes for

packets to reach a destination.

Application Layer Layer that lays out communication protocols.

Top-most layer or Open System Interconnection

(OSI) model.

4.1.2 UNSW-NB15 Dataset

To best go about detecting anomalies within network data, we usedthe

most widely used dataset in the field of network intrusion by the instruction

of our project sponsor. The UNSW-NB15 dataset, gathered by NIDS at UNSW

in Australia provides extremely detailed network traffic data. [3] Not only

does it include normal network traffic but also various network attack types,

making it a very valuable dataset for machine learning used in network

security. The dataset contains 49 features and 9 different attack types.

36

The nine types of attacks are the following: Fuzzers, Analysis,

Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms.

Fuzzers are scripts created by attackers sending large amounts of data to a

network. The goal of this is to find vulnerabilities within an application and

use those security flaws in a larger attack. Analysis attacks look at network

data to learn more about the environment that they are targeting. This

newly gathered information can help identify any weak points within the

application.

Backdoors are created by attackers from within the application to allow

for later entrance. This means that even after an initial patch that may not

allow for the first breach, attackers can find their way into the application.

Denial of Service (DoS) attacks work by providing the application with

excessive traffic such that it does not have enough resources to withstand it.

This can crash the system and allow the attacker to understand the

vulnerabilities within that system. Exploits use known weaknesses in the

application to attack it.

Generic attacks do not fall into a specific category or follow a pattern.

By utilizing techniques that are not common or widely used, generic attacks

simply aim to find a vulnerability within the network. Like Analysis attacks,

Reconnaissance attacks deal with network data, although their main purpose

is to gather it rather than draw conclusions about it. It is as if

Reconnaissance attacks lead to analysis. Shellcode is a type of injection

attack that looks to gain access to the application's shell. Access to the shell

has value as it allows the attacker to run potentially dangerous commands

and gain data while unauthorized. Worms are pieces of malware that can

self-replicate to attack as many systems in as little time as possible.

37

Monitoring network traffic to better our understanding of what packet

data can lead to these types of attacks helped us identify anomalies within

networks. In practice we used simulated data with a similar structure to the

UNSW-NB15 dataset. Our first step was to use a Random Forest and then a

generalized basic neural network to determine what the most valuable

features are.

4.1.2.1 Features

There were 49 features, including the label, outlined below: [3]

No. Name Type Description

1 srcip nominal Source IP address

2 sport integer Source port number

3 dstip nominal Destination IP address

4 dsport integer Destination port number

5 proto nominal Transaction protocol

6 state nominal Indicates to the state and its

dependent protocol, e.g. ACC, CLO,

38

CON, ECO, ECR, FIN, INT, MAS,

PAR, REQ, RST, TST, TXD, URH,

URN, and (-) (if not used state)

7 dur Float Record total duration

8 sbytes Integer Source to destination transaction

bytes

9 dbytes Integer Destination to source transaction

bytes

10 sttl Integer Source to destination time to live

value

11 dttl Integer Destination to source time to live

value

12 sloss Integer Source packets retransmitted or

dropped

13 dloss Integer Destination packets retransmitted

or dropped

39

14 service nominal http, ftp, smtp, ssh, dns, ftp-data

,irc and (-) if not much used

service

15 Sload Float Source bits per second

16 Dload Float Destination bits per second

17 Spk Ts integer Source to destination packet count

18 Dpkts integer Destination to source packet count

19 swin integer Source TCP window advertisement

value

20 dwin integer Destination TCP window

advertisement value

21 stcpb integer Source TCP base sequence number

22 dtcpb integer Destination TCP base sequence

number

40

23 smeansz integer Mean of the ?ow packet size

transmitted by the src

24 dmeansz integer Mean of the ?ow packet size

transmitted by the dst

25 trans_depth integer Represents the pipelined depth into

the connection of http

request/response transaction

26 res_bdy_len integer Actual uncompressed content size

of the data transferred from the

server’s http service.

27 Sjit Float Source jitter (mSec)

28 Djit Float Destination jitter (mSec)

29 Stime Timestamp record start time

30 Ltime Timestamp record last time

31 Sintpkt Float Source inter packet arrival time

(mSec)

41

32 Dintpkt Float Destination interpacket arrival time

(mSec)

33 tcprtt Float TCP connection setup round-trip

time, the sum of ’synack’ and

’ackdat’.

34 synack Float TCP connection setup time, the time

between the SYN and the SYN_ACK

packets.

35 ackdat Float TCP connection setup time, the time

between the SYN_ACK and the ACK

packets.

36 is_sm_ips_ports Binary If source (1) and destination (3)IP

addresses equal and port numbers

(2)(4) equal then, this variable

takes value 1 else 0

37 ct_state_ttl Integer No. for each state (6) according to

specific range of values for

source/destination time to live (10)

(11).

42

38 ct_flw_http_mthd Integer No. of flows that has methods such

as Get and Post in http service.

39 is_ftp_login Binary If the ftp session is accessed by

user and password then 1 else 0.

40 ct_ftp_cmd integer No of flows that has a command in

ftp session.

41 ct_srv_src integer No. of connections that contain the

same service (14) and source

address (1) in 100 connections

according to the last time (26).

42 ct_srv_dst integer No. of connections that contain the

same service (14) and destination

address (3) in 100 connections

according to the last time (26).

43 ct_dst_ltm integer No. of connections of the same

destination address (3) in 100

connections according to the last

time (26).

43

44 ct_src_ ltm integer No. of connections of the same

source address (1) in 100

connections according to the last

time (26).

45 ct_src_dport_ltm integer No of connections of the same

source address (1) and the

destination port (4) in 100

connections according to the last

time (26).

46 ct_dst_sport_ltm integer No of connections of the same

destination address (3) and the

source port (2) in 100 connections

according to the last time (26).

47 ct_dst_src_ltm integer No of connections of the same

source (1) and the destination (3)

address in in 100 connections

according to the last time (26).

48 attack_cat nominal The name of each attack category.

In this data set , nine categories

e.g. Fuzzers, Analysis, Backdoors,

DoS Exploits, Generic,

44

Reconnaissance, Shellcode and

Worms

49 Label binary 0 for normal and 1 for attack

records

We were given two datasets to be able to test our neural network. The

first was a dataset curated by UNSW, which is a giant set of PCAP files. The

second dataset is the simulation environment of a power grid network setup

created by the Pacific Northwest National Laboratory. [3] To be able to run

code in the simulation environment, we have tested running the Docker

container and have been able to interact with the packets used by PyShark.

Our sponsors' stretch goal for this project is for us to improve graph

neural networks. With the research that we have done, we believe that

future teams can build on our work to develop a novel graph neural network

that elaborates on our existing GraphSAGE implementation.

The differences between the two datasets are useful to simulate our

test environment. The UNSW dataset has 2540044 packets, which have nine

different types of attacks. This is very useful as this is simulated to look like

data an IDS is supposed to detect.

The Pacific Northwest National Laboratory simulation is good to test as

this is an environment that is live and acts as the network of a power grid

operator. This is something that we do not have access to, so this is a good

simulation of how it might look live.

45

4.1.3 Simulation Environment

The Pacific Northwest National Laboratory simulation environment

named Network Attack Testbed In [Power] Grid was set up to run on docker,

letting us sniff packets in this network. This simulation environment can give

three types of attacks. These are injections, parameter changes, and

distributed denial of service attacks. We created a Python script that sniffs

the packets using PyShark and turns them into CSVs the same way that we

interfaced with the UNSW data. We did this so that it would be easy to

migrate the code over to this. This simulation environment is a great place

to test the efficiency and reliability of the graph neural network, as we can

change the parameters of the attack.

The final goal for this project is to get our graph neural network

running on this simulation environment and to get all three of these attacks

accurately detected all the time. False positives are better than false

negatives, as we would rather detect all the problems and flag a few benign

packets as malicious than let a malicious packet through.

4.1.4 Neural Networks

Our sponsor provided us with detailed articles on Neural Networks and

they each gave a high-level view and example of how NN’s are created and

what they do when implemented. Having examined three articles detailing

the foundations of these systems, it's clear that we must first unpack the

basics before we try to move into more sophisticated applications regarding

46

our overall project involving Graph Neural Networks and how they can detect

anomalies within data.

Looking at these articles centered around providing information on

NNs as a whole while also focusing on being able to understand the

information that could apply to the general goal of implementing a GNN

allowed for an easier time in the research process by getting a solid

foundation of all necessary details.

Neural networks are designed based on how the human brain works.

They have many connected parts called neuron-like units. These units are

tied together by weights. The weights are what decide how strong the

influence of a unit is on another unit. When you change the weights you can

find the perfect one to make the prediction capabilities of the network better.

Gradient descent and backpropagation are tactics to use in order to make

the correct changes to weights.

Neural Networks are clearly going to be a huge part of our overall

project. The applications come with how well we can understand the

foundation of GNNs which is an NN. By understanding how to work with

them effectively, we can create a graph neural network that is able to spot

anomalies in data with high accuracy and speed.

Activation functions are used by the neurons of a neural network to

make decisions on how they respond to the data passed through them.

When talking about the most popular activation functions, both Sigmoid and

ReLU are popular choices. Sigmoid reduces real numbers to a value between

0 and 1, while ReLU is a nonlinear model that helps with an issue called

vanishing gradient, which is when a gradient used to update the network

becomes so small that it “disappears.” They play a role in helping the

47

network figure out and learn intricate data patterns. However, each

activation function has its different usage scenarios and won’t always be the

right pick for every situation.

Selecting the correct activation function for our project is a very

important task when we implement our Graph Neural Network in code. It

can make the difference between a network that spots anomalies correctly

and efficiently and one that struggles with even simple tasks.

Just like how we sometimes learn things but don't always apply them

correctly, neural networks can also have these unfortunate issues. Even if a

network performs really well on one task, like having a 98% accuracy rate

when recognizing images, it can still make obvious mistakes that cause

difficulty. For instance, while we'd expect it to pick up on clear patterns, it

might sometimes get distracted by random ones that don't really matter. It's

great at noticing something within data but has tendencies to identify false

positives.

This is an important lesson for our project. When building our graph

neural network, we need to focus on training well enough to detect real

anomalies and not target irrelevant data. Although neural networks can be

very powerful for many different tasks the research in these articles and

elsewhere shows that they are not perfect. Older types of networks had their

own set of challenges, like being more rigid in their learning. They couldn't

easily transfer what they learned from one part of the data to another, which

provided some difficulties. Thankfully, newer versions like convolutional

neural networks have done the job of being multifaceted enough to get

through these difficulties and have addressed many of these limitations.

48

Understanding past limitations of Neural Networks can help us avoid

these challenges in the product that we create. It also allows us to identify

what areas we can look at expanding on when trying to beat the

cutting-edge technology that's implemented today. Our objective is to build

a graph neural network that either has something that others don't or goes

above and beyond on one piece of functionality.

There are a ton of tangible, real-world applications of neural networks,

a lot of the time, we just don’t typically notice them. Tech like image

recognition, similar to the example we saw in the paper provided by our

sponsor, as well as cybersecurity, which is usually done behind the scenes.

The ability of neural networks to process vast amounts of data and draw

meaningful conclusions is extremely helpful in fields like cybersecurity or,

more specifically, anomaly detection.

By integrating our anomaly detection mechanisms into real-world

systems, we offer practical solutions. Whether it's spotting irregular patterns

in financial transactions or identifying unusual behavior in security systems,

our graph neural network could be an invaluable asset.

Neural networks are taught through continuous learning. They first set

a foundation through initial training but need to also be exposed to varied

data over time. This ensures that they adapt, evolve, and remain relevant

when looking at different types of data sources or are used in different

scenarios.

As we move forward with our graph neural network, ensuring it has

opportunities to learn from new data keeps it sharp in its anomaly detection

tasks. Our network continuously improves while being exposed to more

data.

49

Neural networks, with their neuron-like structures and learning

capabilities, are at the forefront of modern technology applications. By

understanding their basics, strengths, and limitations, we're better equipped

to harness their potential in anomaly detection. When we took the next

steps in creating a graph neural network, we used these lessons as our

guideposts.

To grasp GNNs, we first establish an understanding of a basic neural

network architecture. Neural networks are based on the structure of the

human brain and have components known as neurons to make predictions.

The foundation of a neural network can be built upon to create many

specialized neural networks, such as Convolutional and Recurrent neural

networks.

Neurons in a basic neural network are composed of some input signal.

The input of a neuron can be the data associated with a particular feature or

the output of some other neuron. These input signals all have a weight that

indicates how important it is in the context of the neuron. The computation

within this neuron is then calculated by using a weighted sum, some bias,

and an activation function. A weighted sum is calculated by using the

following formula [9]:

𝑍 =
𝑖=1

𝑛

∑ (𝑤
𝑖
 ∙ 𝑥

𝑖
)

where represents the number of input signals, is the weight of an input𝑛 𝑤
𝑖

signal and is the value of the input signal. If the weighted sum of input𝑖 𝑥
𝑖

signals is 0, there is a bias introduced to the calculation. After this weighted

50

sum is calculated, the neuron applies an activation function to add

non-linearity to the output. It is essential that a neural network is non-linear,

as a strictly linear model would not be able to make predictions based on a

more complex input.

Using strictly one pass of neurons would not be enough computation

for most neural networks which is where the concept of layers is introduced.

Layers allow the neural network to process data and learn. There are three

main types of neural network layers: the input layer, hidden layers, and the

output layer. The input layer takes the initial data as an input and performs

the first round of neuron calculations. From there, the hidden layers perform

most of the computation and are where most patterns are “learned.” The

output layer performs some final prediction or classification based on the

type of problem that is currently being solved. In the case of binary

classification, you may see a sigmoid classification, whereas for multiclass

classification a SoftMax function may be applied.

The most basic way of learning involves some loss function which the

machine learning model is attempting to minimize. In many cases, this is

achieved by using gradient descent and calculating the mean squared error

between the prediction output and the true output. Gradient descent lowers

the coefficients of the prediction variables more slowly as time goes on to

get the most precise value.

4.1.5 Convolutional Neural Networks (CNNs)

Many people view Convolutional Neural Networks as the step between

trivial neural networks and graph neural networks as they possess qualities

51

of both. A common use case for CNNs lies in the context of images and their

pixels. CNNs use filters to extract features from the image input. Feature

extraction is the process of taking relevant information to make the

computation required for the machine learning task simpler. After this, we

can use what is known as a stride to observe the data around a pixel. The

stride determines how many pixels away the filter moves after any

operation.

Larger strides are more computationally efficient, but they fail to

consider all the details of the pixels. Conversely, using smaller strides

captures more details but requires an increase in computations. To model

more complex relationships between features, CNNs use fully connected

layers. This means that every neuron in one layer is connected to every

neuron from the previous layer. By allowing information learned in previous

layers to be preserved through layers, a CNN makes the most sense for an

informed prediction in the case of image classification.

GNNs take the grid-like operations from CNNs and extend them to

graphs. Their input is a graph data structure as is their output. An image can

be represented as a graph with adjacent pixels being represented as

neighbors. The features can be represented within a node by including

information on the color. The most important operation in GNNs is message

parsing.

Message parsing relies heavily on the concept of neighbors mentioned

in Section 4.3.1. Through message parsing, nodes can communicate

information on their neighbors through aggregation. The formula to

represent message parsing is shown below [9].

52

ℎ
𝑣

(𝑙 + 1) =
𝑢∈𝑁(𝑣)

∑ 𝐴𝑔𝑔(𝑙)(ℎ
𝑣

(𝑙), ℎ
𝑢

(𝑙))

In this formula, represents node in layer . represents theℎ
𝑣

(𝑙) 𝑣 𝑙 𝑁(𝑣)

neighborhood of node, and Agg represents the aggregation function used𝑣

to combine the information from all the neighbors of . Node in layer𝑣 𝑣 𝑙

represents all the information about the node, including learned behaviors

from previous layers. There are multiple aggregation functions, and common

ones include mean pooling, sum pooling, or using attention. The aggregation

function determines how the combination of all the neighbors’ data is

represented in just node v.

The layered architecture of GNNs updates the node based on the

aggregation function. Since each layer of a GNN does message parsing and

aggregation, all nodes would be updated with the most updated information

at the end. Like strides in a CNN, graph theory introduces the idea of hops in

the graph to explore depth. Hops are important to consider when deciding

how message parsing and aggregation will take place. The most basic

example used in GNNs is a social network, not an image grid. If we use this

example to explain hops, one hop from node v would be looking at the

friends of node v, whereas two hops would look at the friends of the friends

of node v. This information gets aggregated into node v after two layers and

now node v has knowledge from many nodes in the graph.

A benefit of GNNs is that they can quickly allow us to learn a lot about

a graph, especially one that has high connectivity, though this may be very

computationally expensive.

53

4.1.6 Graph Theory

4.1.6.1 Graphs

Just like we learned about Neural Networks from our sponsor, we also

need to know about Graphs for our project. Think of graphs as a bunch of

dots (called nodes) connected by lines (called edges). These simple

structures can show us how different things link up, like friends in a social

network. When we mix this idea with Neural Networks, we get something

super cool called Graph Neural Networks (GNNs), which are great for finding

odd patterns. It's a combo that packs a punch, using both the strengths of

graphs and neural networks.

A graph is a data structure designed to efficiently represent networks.

In particular, a graph is a mathematical object, denoted , which𝐺 = (𝑉, 𝐸)

consists of a set of objects , called nodes, and a relation , called the𝑉 𝐸⊆𝑉×𝑉

edge relation. By convention, an edge represents a connection (e.g.,𝑢, 𝑣()∈𝐸

arrow) from node to node . For each node , its neighborhood is the𝑢 𝑣 𝑢 𝑁(𝑢)

set of nodes that it is connected to, i.e., the set of nodes incident to .𝑢

Formally,

𝑁 𝑢()≔ 𝑣 ∈ 𝑉 : 𝑢, 𝑣() ∈ 𝐸{ }.

As the above definition shows, a node need not be in its own

neighborhood unless it is connected to itself. That is, . To illustrate𝑢, 𝑢()∈𝐸

these constructions, consider the following network:

54

The corresponding graph consists of nodes and𝐺 = (𝑉, 𝐸) 𝑉 = {1, 2, 3}

edges . In this case, the neighborhoods are ,𝐸 = { 2, 1(), (2, 3)} 𝑁 1() = ∅

, and where is the empty set. Note that in the𝑁 2() = {1, 3} 𝑁 3() = ∅ ∅≔{}

above network (and hence graph), the only connections between nodes are

one-way channels.

In order for the graph to contain a two-way channel between nodes 𝑢

and , it needs to have both the edges and . If every connection is𝑣 (𝑢, 𝑣) (𝑣, 𝑢)

a two-way channel, then the graph is said to be , otherwise it is𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑

directed. Note that a graph being undirected is equivalent to saying that the

edge relation is symmetric. That is, for every edge , it must be true𝐸 𝑢, 𝑣()∈𝐸

that . Formally,𝑣, 𝑢()∈𝐸

∀ 𝑢, 𝑣() ∈ 𝐸, 𝑣, 𝑢() ∈ 𝐸.

As this example illustrates, with the right definitions, we can discover a

lot of rich structures behind graphs. This motivates its formal study in

mathematics called Graph Theory. We aim to utilize this theory to design an

efficient algorithm for detecting network anomalies.

Graph theory is the study of graphs, which is a mathematical way to

represent different types of data and the relationship between them. Graphs

are composed of nodes and edges. Nodes are an abstract concept and can

represent any sort of data or entity. Edges connect two nodes in a graph and

may contain data as well. In this case, the IP address of one device can be a

node, while the IP address of another can be the other node. The edge that

connects these nodes could represent the payload sent between the two

devices. Understanding what an attack looks like in terms of the data sent

55

between devices allows us to use graphs to make predictions on what type

of attack is occurring.

Graphs are like a big web. Each dot or node can be anything - a

person, a computer, or even a place. The lines or edges between them show

how they are connected. These connections can go two ways (like a two-way

street) or just one way. By visualizing these connections, it's easier to see

how different things relate and interact with each other.

Graphs help our project a lot because they show data in a clear way.

When we want to find something odd or different, seeing it on a graph

makes it easier. It's a visual tool that gives clarity and can be super handy

when dealing with a lot of info.

There are many types of graphs. Some show two-way connections

(Undirected Graphs). Others show one-way connections (Directed Graphs).

And some graphs use the lines to show how strong a connection is

(Weighted Graphs). Each type has its unique way of showcasing

relationships, giving us options to best represent our data. [10]

Figure 3. Image of an undirected (left) and directed graph with weighted

edges(right).

56

Picking the right graph for our project is important. We need to look at

our data and figure out which type of graph shows it best. It’s like choosing

the best frame for a picture; the right choice makes everything clearer.

In tech, we can use graphs in many ways. Some smart tools, like what

Google uses, figure out which websites are important by looking at their

links. Others group similar dots together. It's a way to find patterns and

trends in the web of information. By using these smart tools on our graphs,

we can better find odd patterns. Knowing which parts of our graph are more

important or which dots are similar can help our GNN work better. This

combo helps speed up our search and make it more accurate.

To understand graphs, we use things like Degree (how many lines

connect to a dot), Path Length (how far apart two dots are), and Clustering

(how dots bunch up together). These measures help break down the graph's

features and tell us more about its structure. Using these measures in our

GNN can help it understand data better. For example, strange things might

show up in dots with a lot of connections or on long paths. By keeping an

eye on these measurements, we can refine our search for odd patterns.

Graphs are great, but they can have issues. They can get very big,

which can slow things down. Also, in the real world, the dots and lines in a

graph can keep changing. That means we always need to be on our toes and

adjust as things change. We thought about these problems when making our

GNN. Attempted to find ways to handle big graphs quickly and deal with

changes to keep finding odd patterns accurately. Preparing for these

challenges made our tool stronger and more reliable.

57

As the world gets more connected, from online friends to smart

devices, graphs become more and more useful. They can help us understand

big systems and find useful patterns. As things become more linked, the role

of graphs will only grow. Our GNN project, built on graphs, is on the right

track. Finding odd patterns in connected systems is becoming more

important, so our work is very valuable. As the demand grows, our GNN

could become a go-to tool for many.

Graphs, by showing how things connect, have a lot of uses on their

own, but when we mix them with Neural Networks, we can find odd patterns

even better. As we move forward, what we learned about graphs guided our

project.

4.1.6.2 Neighborhoods and Connectivity

A primary concept of graphs that GNNs rely on is the neighborhood of

graphs. The neighborhood of a node is the set of all its neighbors. We can

learn a lot about nodes just by looking at their neighbors. In the context of

networks, we can use a neighborhood to study the flow of traffic in a

neighborhood and identify key nodes in the network. When making

predictions on graphs, we can focus primarily on the nodes, edges, or the

whole graph.

The only reason why we can look at the whole graph is the local

connectivity of any node. As we explore the graph through a node’s

breadth-first search, we are looking at the neighbors’ neighbors and we can

associate the current breadth with how closely associated two nodes are.

This is useful for community detection and node classification.

58

Bridges are a more complex concept of graphs that are also strongly

related to anomaly detection. A bridge or cut-edge is an edge of the graph

that, if removed, would result in an increase in the number of components in

the graph. In some cases, this would be a strong indication of an anomaly as

the node is only connected to the rest of the graph by one edge. Bridges are

related to connectivity which refers to how strongly the nodes in a graph are

connected to one another. A strong network would likely have relatively high

connectivity. High connectivity suggests that the graph is resilient and

indicates that there are only a few cut edges that, if removed, would impact

the structure of the graph.

4.1.6.3 Adjacency Matrices and Lists

The standard way to encode graphs is as follows. Assuming the graph

is finite (that is, there is only a finite number of nodes), we label𝐺 = (𝑉, 𝐸)

the nodes in some arbitrary order . We then construct an𝑉 = {𝑢
1
, …, 𝑢

𝑛
}

adjacency matrix associated to the graph where if𝐴∈𝑅𝑛×𝑛 𝐺 𝐴
𝑖,𝑗

= 1 𝑢
𝑖
, 𝑢

𝑗()∈𝐸

and otherwise. Consider the previous graph example. The nodes are0

already labeled from to . Thus, its corresponding adjacency matrix is,1 3

As a remark, note that a graph is undirected if and only if its adjacency

matrix is symmetric along its main diagonal. Now with graphs encoded as

matrices, we can feed the graph as input to a neural network. This is great if

59

we want to automatically learn the features of a single, fixed graph.

However, some glaring issues naturally arise when we attempt to generalize

to arbitrary graphs.

The most obvious obstacle is having a network that can process

variable-sized graphs since the adjacency matrix grows quadratically with

the number of nodes. Even if this were to be solved, another pressing

obstacle is that the adjacency matrix is not unique given that a different

ordering of the nodes would generate a permutation of the adjacency

matrix. Such a neural network would need to be designed to be invariant

under matrix permutation for it to be well-defined on graphs. And the last,

more practical concern, is that adjacency matrices are very inefficient

representations for graphs with few connections like trees or forests.

Instead of adjacency matrices, we can also encode graphs with

adjacency lists which essentially associate each node with its neighborhood.

This has the benefit of not requiring us to arbitrarily label nodes and hence

leads to a unique representation for each graph without extraneous

information. Unfortunately, it is not immediately clear how this

representation can be fed into a neural network as now each node has a

variable length array associated with it. To remedy this, let’s take a step

back and see how graphs model communication networks in the first place.

4.1.7 Graph Neural Networks (GNNs)

Indeed, digital communication networks can be encoded as graphs

where the servers are nodes and the open communication channels are

60

edges. If we associate to each node a vector , called a node embedding,𝑢 ℎ
𝑢

we can then use to represent packet data transmitted between servers.ℎ
𝑢

Finally, if we allow to be dependent on time , denoted , we canℎ
𝑢

𝑘 ℎ
𝑢
(𝑘)

then use to represent the time evolution of a network. This extraℎ
𝑢
(𝑘)

structure to our graph defines a dynamic graph on the nodes. Similar

embeddings can be made for edges and the graph as a whole whichℎ
𝑢,𝑣()
𝑘() ℎ

𝐺
𝑘()

allows for even greater expressivity.

The procedure by which we transition from an embedding at time to𝑘

an embedding at time ultimately defines the behavior of our graph. To𝑘 + 1

leverage the graph structure when transitioning between embeddings

through time, we can restrict our transition function to only depend on local

properties like current embedding and neighborhoods and global properties

like graph embedding. In the most general setting, we iterate according to

the following equations [11]:

(1.1)ℎ
𝑢,𝑣()
𝑘+1() = 𝑢𝑝𝑑𝑎𝑡𝑒

𝑒𝑑𝑔𝑒
ℎ

𝑢,𝑣()
𝑘() , ℎ

𝑢
𝑘(), ℎ

𝑣
𝑘(), ℎ

𝐺
𝑘()()

(1.2)𝑚
𝑁 𝑢()

= 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒
𝑛𝑜𝑑𝑒

ℎ
𝑢,𝑣()
𝑘+1() : 𝑣∈𝑁 𝑢(){ }()

(1.3) ℎ
𝑢
𝑘+1() = 𝑢𝑝𝑑𝑎𝑡𝑒

𝑛𝑜𝑑𝑒
ℎ

𝑢
𝑘(), 𝑚

𝑁 𝑢()
, ℎ

𝐺
𝑘()()

(1.4) ℎ
𝐺
𝑘+1() = 𝑢𝑝𝑑𝑎𝑡𝑒

𝑔𝑟𝑎𝑝ℎ
ℎ

𝐺
𝑘(), ℎ

𝑢
𝑘+1() : 𝑢 ∈ 𝑉{ }, ℎ

𝑢,𝑣()
𝑘+1() : (𝑢, 𝑣)∈𝐸{ }()

61

First, we update the edge embedding using its past embedding,ℎ
𝑢,𝑣()
𝑘+1()

the embedding of its incident nodes, and the graph embedding (Eq. 1.1).

Next, we update the node embedding using its past embedding, anℎ
𝑢
𝑘+1()

aggregate of all embeddings of its incident edges, and the graph𝑚
𝑁 𝑢()

embedding (Eq. 1.2 and 1.3). Finally, we update the graph embedding ℎ
𝐺
𝑘+1()

using its past embedding, the embedding of all nodes, and the embedding of

all edges (Eq. 1.4). Note that the update and aggregate functions are

arbitrary. To illustrate how the transition procedure works, consider Figure 3.

The diagram in Figure 3. illustrates where the embedding of theℎ
⋆

top-left node traverses as we move forward in time (i.e., layers). In⋆

particular, the top left node is adjacent to the top and top-right nodes so ℎ
⋆

moves to those respective nodes on the first iteration (layer 1). From there,

the top node is adjacent to all other nodes in the graph. Thus moves to allℎ
⋆

nodes. [12]

62

Figure 4. Diagram of embeddings passing through an undirected graph in

three iterations [12].

Other than the top node on the second iteration (layer 2). However,

the top-right node is adjacent to the top-left and top nodes. Thus alsoℎ
⋆

moves to the top node on the second iteration. Therefore, is considered inℎ
⋆

every node of the graph at the second iteration. A similar argument applies

to the third iteration (layer 3).

In Figure 3, we only consider where the embeddings go with each

iteration. However, if we apply some computation step in the middle, we can

begin to calculate the properties of the graph. In particular, with the

appropriate choice of update and aggregate functions, we can leverage these

graph dynamics to compute network features at the node level, edge level,

and graph level. How to select these update and aggregate functions

depends on the problem but with a suitable parameterized construction, we

can apply the same techniques as in neural networks to learn the functions.

63

The above construction defines a graph neural network (GNN). The

reason for this terminology is that the transition functions for graphs parallel

to the transition functions for neural networks. In fact, graph neural

networks can be thought of as a generalization of convolutional neural

networks (CNN) since the corresponding graph for CNNs has nodes

representing pixels with edges connecting adjacent pixels [9].

Graph neural networks go through data from each node, it finds

relationships by looking at the edges. The layers of the network are equal to

the diameter of the graph. Each layer will look past another edge. This

makes it so that each layer has more information than the last, making it

such that the last layer will have all the relationships that occur in the graph.

Because a graph neural network will show the ideal relationships in a graph,

an anomaly will be a large outlier in the graph making it easy and efficient to

detect.

Figure 2 shows the representation of the types of graph neural

networks that currently exist. One of the big decisions that we must make is

to see if we should use a static or dynamic graph. The difference is that a

static graph does not change over time, making the computation easier and

the neural network easier. Dynamic graphs on the other hand are a graph

that changes over time. This is relevant to networks as networks are

constantly evolving, there are many devices entering and leaving the

network. Dynamic graphs are also the least researched graph type, and the

only type of detection that currently is written about is anomalous node

detection and anomalous edge detection.

After looking through this we realized that we must first understand

the graph neural network frameworks to find out what types of graph neural

64

networks exist. The simplest framework is a graph convolutional network. A

graph convolutional network operates by convolving filters on a graph,

letting it extract patterns and relationships in the network. It is like

convolutional neural networks but applied to graphs. There is then the

network architecture that you want to use to find anomalies. There are many

architectures that can be used, usually the researchers create their new

novel idea with these methods.

Graph Neural Networks combine the graph data structure with neural

networks to enhance data analysis and machine learning. The main reason

why this project is suited for a GNN architecture is because not only do we

need to look at individual packets but also the connections between devices.

Using a graph gives us an understanding of the whole network. To have a

grasp on how GNNs operate, a basic understanding of graph theory is

essential.

After diving into both Graphs and Neural Networks, let's bring them

together to understand Graph Neural Networks or GNNs. GNN’s combine

both the web-like structure of graphs, and the human brain-like aspect of

Neural Networks. They’re great for cyber security tasks like ours of detecting

anomalies in data, and are designed to find odd patterns and details in a

special way.

GNNs use the best parts of graphs and neural networks. They

understand the nodes and connections/edges of graph data. For our project,

GNNs are a game-changer. They let us see odd patterns in data that’s all

linked up. We're not just looking at random bits of info; we're diving deep

into how everything is connected. [12]

65

Figure 5. Illustrates the message-passing operation in the GNN. [12]

Like neural networks, GNNs learn from data. But they focus on the

links and connections between things, this leads to GNNs being able to get

better and better after they are built. This is because they make smart

guesses on connections by going back and forth over the data being passed

through them.

This unique way of learning means GNNs are great for spotting hidden

patterns in connected data. One of their strengths is understanding the

web-like patterns of the data, and passing it through this structure, which is

perfect for our goal of finding odd patterns or in our goal's case, anomalies.

Even though GNNs are powerful and effective in many scenarios, there

are still times where they have obstacles to get through. They need lots of

data to learn well, and sometimes, they can take a long time to process all

that data, especially when the links and connections get complicated.

By combining graphs and neural networks, GNNs offer an efficient

process that is able to spot odd patterns effectively. As we continued

through our project, the lessons from both were our foundational guidance.

66

It is important to know the different types of GNNs as well as their

strengths/weaknesses. We're working to make Graph Neural Networks

(GNNs) even better. We can improve how they see and understand data,

make them adjust to new information faster, and help them manage bigger

sets of data more easily. Combining GNNs with other tech models could help

spot issues more widely. Plus, if we let our GNN learn from its past actions, it

can get smarter over time. All these steps make our tool stronger and more

prepared for future challenges.

Graph Neural Networks (GNNs) excel at learning patterns and

relationships within graph-structured data. The extracted features, including

source and destination IP addresses, port numbers, protocol information,

and timing characteristics, can serve as node and edge attributes in the

graph representation. These features encapsulate the contextual information

necessary for GNNs to discern normal from anomalous network behavior.

In conclusion, the featurization of packet capture files using PyShark,

coupled with the power of Graph Neural Networks, offers a robust approach

to anomaly detection in network traffic. The extracted features provide rich

contextual information, and the graph structure allows for a nuanced

understanding of network interactions. This methodology contributes to the

advancement of network security practices, enabling more accurate and

proactive identification of anomalies.

67

4.1.8 Tools for Graph Neural Networks

4.1.8.1 Connectedness Ratio

When studying graphs, an important characteristic to look for is how

connected the graph is. On first-order considerations, we only look at what

nodes each node is connected to. This is called the node’s neighborhood as

discussed before. On the next stage, we may want to look at how connected

the neighborhood is. That is, checking if each neighboring node is connected

to each other. Intuitively, the more connected a node’s neighborhood is, the

more the neighborhood acts like a single node.

We can quantify this numerically by taking a ratio of the

connectedness of the neighborhood compared to the maximal scenario

where every node in the neighborhood is connected to each other.

Symbolically,

[13]

Here, is the connectedness ratio of a node which is calculated as𝑐
𝑢

𝑢

the ratio of the number of edges within the neighborhood(𝑣
1
, 𝑣

2
) ∈ 𝐸 𝑁(𝑢)

treated as a subgraph and the maximal possible case choose where is𝑑
𝑢

2 𝑑
𝑢

the number of nodes in the neighborhood of .𝑢

68

The usefulness of the connectedness ratio is that it allows us to give a

measure for how fully connected a neighborhood is. As stated above, a

neighborhood which is close to fully connected should act more like a single

node at least in the context of communication networks. This is because

they all influence each other in a significant / direct way. Hence any edges

going outside the neighborhood will likely be dependent on the activity of the

entire neighborhood, not just a single node.

4.1.8.2 Basic Overlap Statistic

We may also care about the relationship between two neighborhoods.

The simplest statistic on this is a first-order consideration which is the basic

overlap statistic which is a count of nodes shared between two

neighborhoods. Symbolically, [13]

[13]

Here, is the number of nodes within the neighborhood of𝑆[𝑢, 𝑣] 𝑁(𝑢)

node and neighborhood of node . As an aside, knowing the size of𝑢 𝑁(𝑣) 𝑣

the neighborhoods and , in addition to the basic overlap statistic,𝑁(𝑢) 𝑁(𝑣)

gives us enough information to calculate the size of which may𝑁(𝑢) ∪ 𝑁(𝑣)

be useful for analyzing the influence two nodes have on the network as a

whole. Importantly, the basic overlap statistic is proportional to the

probability that the two nodes are adjacent to each other. Symbolically, [13]

[13]

69

Keep in mind that the proportionality is with respect to change in

nodes and . With the basic overlap statistic, one can study whether two𝑢 𝑣

nodes share influence over a lot of nodes in quantity. This is useful when one

cares about the scale by which two nodes influence the graph and less so

whether the two nodes have the same topology.

4.1.8.3 Sorenson Overlap Statistic

That said, the basic overlap statistic doesn’t take into consideration

how connected the two neighborhoods are. Specifically, if both nodes and𝑢 𝑣

have a high degree in the graph with low overlap, the basic overlap statistic

would ignore that their neighborhood overlap is practically nonexistent,

compared to one where a majority of the neighborhood overlaps.

We can remedy this by taking a proportion of the overlap with respect

to the total number of nodes in each neighborhood. Specifically this is called

the Sorenson overlap statistic. Symbolically, [13]

[13]

In contrast to the basic overlap statistic, the Sorenson overlap statistic

allows us to study whether two nodes have a high proportion of overlap. If

70

they do, then both nodes can be thought of as having equal contribution to

the graph topology and dynamics.

Specifically, when the Sorenson overlap statistic is close to 1, both

neighborhoods are practically the same. Indeed, at the limit of 1, the

neighborhoods are exactly the same. If the Sorenson overlap statistic is

close to 0, both neighborhoods are practically disjoint. Indeed, at the limit of

0, the neighborhoods have no common node.

This is especially useful for network analysis when attempting to

identify if two nodes share similar influence on the network. Pairs of nodes

with high Sorenson overlap statistic would imply that we should treat the

two nodes as practically the same node. This gives a more refined analysis

than the connectedness ratio since we are looking at a pair of nodes instead

of an entire neighborhood.

4.1.8.4 Katz Index

As mentioned, the Sorenson overlap statistic may be used to give a

rough estimate on the similarity in influence two nodes have over a graph.

We can get a better estimate by extending our neighborhood consideration

into larger depths. Intuitively, the further away a node is connected to

another, the less influence they have over each other. To quantify this, we

can scale by a decaying factor with respect to the neighborhood depth. This

is called the Katz index. Symbolically, [13]

71

[13]

Here, is the th-step adjacency matrix where if and only if𝐴𝑖 𝑖 𝐴𝑖[𝑢, 𝑣] = 1

there is a path of exactly length between nodes and . Moreover, is the𝑖 𝑢 𝑣 β𝑖

decaying factor where is chosen such that it is smaller than the reciprocalβ

of the absolute value of the largest eigenvalue of . The Katz index gives a𝐴

measure of how tightly connected nodes and are.𝑢 𝑣

However, much like the basic overlap statistic, the Katz index suffers

under the heavy influence of nodes with high degree. This is partly because

a node with high degree gives a lot more opportunities for a path of length i

to exist between two nodes. In particular, it would artificially blow up the

adjacency matrix count compared to a node which is just as strongly

connected but which does not have as many opportunities to branch. To

remedy this we can take the expected path value between two nodes. [13]

[13]

We then invert the expected path value and use it to scale the Katz

index. This allows us to take into account nodes with high degree since it

acts as a normalizing constant, scaling down the count on path lengths

which are more likely to carry an instance from to . That said, the Katz𝑢 𝑣

Index is very useful in giving an estimate on just how strongly connected

72

two nodes are to each other. Thus any analysis on the indirect influence a

node has on another can find fruitful use with the Katz Index.

4.1.8.5 Katz Centrality

The previous measures all look at how related two nodes are based on

their influence over a graph. We can use these measures to assign a

quantity on each node that measures their respective influence over the

entire graph. More specifically, we can get a measure of the relative

influence of a node within a graph by fixing a node and summing a given𝑢

measure over all nodes in the graph.𝑣

If we perform this procedure with the Katz Index in particular, we get

the Katz centrality of node . Intuitively, the Katz centrality measures the𝑢

relative influence of a node within a graph since it sums up the influence a

node has on each node in the graph. If we take the normalized Katz Index

based on expected path length, then we can normalize by the size of the

graph to get a proportion on how strongly a node influences the graph.

By influence, we mean whether a path exists from a node to another

node and by how much. Clearly for a complete graph, every node influences

the other nodes by the same amount, and hence the proportion should be

the same for all nodes. This is indeed what happens when using the Katz

centrality measure.

In contrast, a graph where a select few nodes have direct connections

to almost the entire graph would have a much higher Katz centrality

measure than the other nodes which are connected indirectly to the rest of

the graph.

73

4.1.8.6 Laplacians

When dealing with dynamical systems in physics, many important

characteristics of the systems are dependent on how far the object

“diverges” from the “average”. For example, when studying gasses, it is

important to know how gasses spread, i.e. diffuse. This is generally

calculated using the Laplacian, or the Laplace operator [14].

In classical mechanics, the Laplacian is a differential operator that is

given by the divergence of a conservative field and hence measures how

much a point is a source or sink in the field. In differential geometry, the

Laplacian has a more geometric interpretation. It measures the curvature of

a field and, in particular, tells you how far the value of a point deviates from

its neighboring points in the space.

We can adapt this concept to discrete structures like graphs. In

particular, the Laplacian as a differential operator can be approximated using

a finite-difference equation. This gives the discrete Laplacian. Most

importantly, the finite-difference equation essentially samples values from its

neighbors and applies some weighted average. We can generalize this by

extending our definition of neighbors to that of graph neighbors and extend

the weighted average in a natural way. The result is the unnormalized

Laplacian [13]

[13]

which is defined as the difference between the degree matrix, a matrix

where the diagonal consists of the degree of each node, and the adjacency

74

matrix. This acts much like a finite-difference approximation of a derivative

but where our geometry, instead of being euclidean space, is a graph.

However, as presented, the unnormalized Laplacian is scaled by the

maximum degree in the graph which leads to scaling issues in calculations.

By normalizing to a ratio, we get a unique operator associated with a given

graph that tells us, by proportion, how each node relates to other nodes in

terms of connectivity. In particular, we get the normalized Laplacian: [13]

[13]

This inverts the Unnormalized Laplacian by the degree, turning the

matrix into a ratio. Observe that since the Laplacian matrix is a linear

operator, it corresponds to a linear transformation from graph nodes to some

spectral domain. The corresponding spectral decomposition of a graph via

the Laplacian can be used to construct low-dimensional embeddings of the

graph for purposes of machine learning. The eigenvectors of the Laplacian

matrices moreover can be used to create an ideal clustering of graphs.

4.1.8.7 Cut

At times, it may make sense to observe just how concentrated a graph

is in terms of forming separate cliques. To quantify just how clustered a

graph is, we can define a list of subgraphs of interest and measure how far

these subgraphs extend beyond their set of nodes. In particular, we can

count how many edges leave each subgraph and add them up to give a

score. Symbolically, [13]

75

[13]

The score assigned to this set of subgraphs then tells us how far away

the graph is in being clustered into these subgraphs. In particular, a low cut

signifies that our graph is mostly contained in one of these subgraphs and is

mostly disjoint from the others. A high cut signifies that our graph is

strongly connected between subgraphs and that there is not as much

clustering.

The usefulness of this measure is that we can give a quantity for how

isolated a feature is in the graph where a feature defines a subset of nodes

of interest. If the feature is very isolated (that is, the cut is low), then there

is likely a linear behavior in assignment of this feature. If in contrast, the

feature is not very isolated, then there may be strong nonlinear behavior

influencing the feature’s assignment.

4.1.8.8 Ratio Cut

Of course, like before, the cut measure is heavily weighted by the

degree of the nodes within the subgraph. That is, a subgraph with a high cut

score but even higher degree within the subgraph itself may wrongly be

interpreted as saying that the subgraph is not strongly independent. This is

not ideal, since a large complete subgraph is very much an independent unit

of the graph if the outwards edges are miniscule in comparison to the graph.

To remedy this issue, we normalize! Symbolically, [13]

76

[13]

This computation involves determining the ratio of outgoing edges

from a given subgraph to the total number of nodes within that subgraph.

Essentially, this ratio reflects the degree of connectivity among the nodes

within the subgraph and serves as a meaningful indicator of the subgraph's

internal cohesion relative to its external connections within the larger graph.

Remarkably, the pursuit of an optimal collection of subgraphs,

minimizing the ratio cut, leads us to explore the spectral decomposition

associated with the second smallest eigenvalue of the Laplacian matrix. This

analytical approach provides a systematic means of identifying subgraphs

that efficiently partition the graph into distinct, largely independent clusters.

By leveraging the spectral decomposition and focusing on the second

smallest eigenvalue, we can algorithmically pinpoint subgraphs that foster

well-defined and isolated groupings within the broader graph structure.

4.1.8.9 Volume Cut

That said, the ratio cut may seem rather unintuitive to be considered a

ratio. This is because it measures how much a subgraph is connected

relative to the entire graph rather than how much a subgraph is connected

77

relative to itself. In particular, the maximal number of edges within a

subgraph grows quadratically with respect to the number of nodes.

Thus, we can find a pathological example, where we have a large

complete subgraph with a single node that has out degree linear with

respect to the node count so that the ratio cut gives us a high ratio even

though the subgraph should very much be treated as independent given that

it has significantly more connections within the subgraph than it does

outside.

To remedy this issue, we can alter our ratio to be with respect to the

number of edges within the subgraph instead of just the number of nodes.

Notationally, we call this the volume of the subgraph denoted .𝑣𝑜𝑙(𝐴
𝑘
)

Symbolically, [13]

[13]

This formula thus gives a measure of how much a subgraph is

connected to itself compared to outside. In particular, the ratio is less than 1

if the subgraph is mostly connected to nodes within the graph. The ratio is

greater than 1 if the subgraph is mostly connected to nodes outside the

graph.

As a result, the total volume cut gives a measure of how much the

subgraphs are completely isolated from the rest of the graph. This is an

especially useful measure for cliques since we already know the subgraphs

78

are complete but we would like to know whether the subgraph has greater

influence outside of its set than to itself.

4.1.8.10 Encoder-Decoder

With all the measures of a graph now defined, it is time to give a

framework in which we can learn features of the graph using standard

machine learning techniques. In particular, a graph by itself is rather difficult

to study. The simplest way to overcome this problem is to encode the nodes

(and/or edges) of the graph into some ambient euclidean space where the

encoding is chosen so that it is possible to extrapolate the graph structure

from the embeddings.

We can describe this mathematically as an encoder-decoder model.

Particularly, the encoder assigns each node an embedding in the ambient

space. The decoder seeks to extrapolate some topological information

between two nodes by just looking at their corresponding embeddings.

Symbolically,

[13]

[13]

We can think of the decoder as a pseudo-metric function that gives a

measure of how strongly correlated two vectors are under a given

topological consideration. This is not a true metric, or at least it shouldn’t be

79

thought of as such since the graphs we are dealing with are finite and hence

the topology induced by the metric is guaranteed to be discrete.

By aligning the decoder to gauge the similarity score between two

nodes based on a specific graph consideration, we achieve a successful

encoding of the graph into an ambient vector space. This alignment allows

us to effectively discriminate between nodes, considering the nuances of the

graph's underlying structure. In this manner, the decoder serves as a

valuable tool for navigating and interpreting the intricate relationships within

the graph, facilitating the extraction of meaningful insights from the encoded

vector space.

4.1.8.11 Loss Function

To achieve the goal set before, we can attempt to learn the

encoder-decoder functions by identifying them in some parameterized family

and then applying some loss function that measures the error in the

estimate between the decoder and the similarity measure. In particular, the

total loss is quite simply the sum of the loss across each pair of nodes in the

graph. Symbolically, [13]

[13]

The loss function could be any classification function but should be

chosen so that the overall function can be thought of as smooth with respect

80

to the embeddings (and the similarity measure fixed). Defining our

encoder-decoder models as a neural network, the total loss function is then

a real valued function that can be subjected to backpropagation which is

then used to optimize the neural networks.

This is especially powerful in that it allows us to train a neural network

to encode a graph into a low-dimensional euclidean space. With appropriate

loss and similarity measure, we can construct an encoding so that average

network activity is bounded within some hypersphere. The anomalous nodes

in the network will then be identified as those nodes which are encoded

outside the hypersphere threshold. In fact, this model is the primary method

in which state-of-the-art graph neural networks detect anomalous nodes

within a network either communication, financial, or social.

4.1.8.12 Tensor Decomposition

Of the many mathematical tools deployed in machine learning tools,

tensors, has been one of the more successful additions, especially at

handling deep networks and large dimensionality. This is partly because

tensors offer a compact representation of multi-dimensional data with

symmetry properties that make it very nice to work with in contrast to

regular matrices. The biggest utility comes from tensor decomposition [15].

In contrast to matrix decomposition, which often demands stringent

conditions for a unique factorization, tensor decomposition operates under

more lenient prerequisites, leveraging higher dimensions to introduce

additional symmetries that enforce uniqueness in the factorization process.

81

The inherent structural complexity of tensors, facilitated by these

symmetries, guarantees unique factorization. This unique characteristic sets

tensor decomposition apart, offering a more forgiving framework where a

one-of-a-kind factorization can be attained under weaker conditions. The

nuanced interplay of symmetries within tensors not only simplifies the

factorization process but also underscores their versatility in handling

complex data structures, positioning tensor decomposition as a powerful tool

in diverse fields, from data science to signal processing and beyond.

Computationally, the main interest in constructing a decomposition is

because we can transform a high-dimensional tensor into either a product or

sum of low-dimensional tensors. That is, we can reduce the dimension of our

data which makes it easier to analyze with statistical methods and also work

with in a machine learning context.

Ultimately, in the context of graph neural networks, tensors provide a

means for us to store not only structural graph data but also temporal data

as an extra dimension. This allows us to then construct a model that

considers network activity through time instead of just a single instance of

time which is essential for identifying DDoS attacks or timing attacks.

4.1.8.13 Adjacency Tensor

However, a temporal dimension is not the only thing a tensor can be

used for. In fact, where the adjacency matrix serves as a linear algebraic

representation of graphs, adjacency tensors serve as a multi-linear algebraic

representation of hypergraphs [16].

82

In particular, a hypergraph is one in which edges can connect to more

than just a pair of nodes. Mathematically, this can be thought of as

generalizing the edge set to simply being a family of subsets of the vertex

set with no restriction on the subsets being at most cardinality two.

However, we still want to be able to have some structure in the

hypergraph, so we instead consider k-uniform hypergraphs where every

edge set has at most cardinality k. A regular graph is then a 2-uniform

hypergraph. Representing these hypergraphs can no longer be done

perfectly with a simple adjacency matrix since an adjacency matrix only

looks at pairwise connections. To go around this, we introduce the notion of

an adjacency tensor.

Much like a regular adjacency matrix, the adjacency tensor has

k-degrees of freedom where each degree has dimension equal to the number

of nodes in the graph. An entry in the adjacency tensor is one if and only if

the corresponding set consisting of nodes corresponding to the entry-indices

is an edge in the hypergraph.

The utility of this construction for network anomaly detection is that

communication networks may be laid out so that a single node is

communicating the same message to multiple nodes. This occurs especially

in distributed systems or power grids where a single plant supplies power to

multiple units. The simplest way to encode these networks is as a graph

where an edge exists if there is a path between the nodes in the underlying

network. The issue with this approach is that it divides a distributed network

connection into multiple pairwise connections that have no correlation in the

graph. That is, it loses information that the edges are actually related to

each other.

83

To remedy this, we can instead encode the network as a hypergraph so

that the distributed network connection is in fact one edge. A directed flavor

to the hypergraph can also be imposed by requiring that the first index

represents the source of the edge and all other indices represent sinks of the

edge. Of course, the corresponding adjacency representation is

fundamentally multi-dimensional which is why we use adjacency tensors

instead of adjacency matrices.

4.1.8.14 Multi-Relational Data and Knowledge Graphs

Multi-Relational graphs are defined by their variance in the types of

edges that can exist between two nodes.

[13]

e represents an edge in the graph, u and v indicate what nodes are

being connected by the edge, and represents the type of edge. Because of

the introduction of different edges the decoder function works differently

[13]

Instead of taking in node embeddings it also takes in a relation type

where RT is a matrix that represents the relationship between the different

84

nodes and Zu and Zv represent the node embeddings of two connected

nodes. RT is trained using backpropagation. The issue with this model is that

it works in O(d2) as opposed to latter models that work in O(d)

4.1.9 Anomaly Detection

Due to the complex nature of GNNs, anomaly detection involves

determining the best method for the specific use case. Graphs can be static

or dynamic, dynamic graphs contain connections that change over time,

making anomaly detection a complicated task. Alongside this, anomalies can

be detected at the node, edge, and graph level. [1]

Figure 6. Diagram to determine which method to use for GNN-based

anomaly detection. [1]

85

As see in the image above, most node anomaly GNN-based

approaches for detecting anomalies are based on the Graph Autoencoder

(GAE) framework. The GAE framework encodes the node’s features into a

representation of a lower dimension. By reducing the dimensions of the node

while keeping important features, there is faster computation. After this the

decoder recreates the graph structure. From here the general neural

network architecture is followed through a loss function and training followed

by evaluation.

Another common acronym seen in the diagram is GCN which stands

for Graph Convolutional Network. A GCN is a specific type of GNN that uses

forward propagation for convolution operations. Extensions of them explore

isomorphisms within graphs and attention.

Anomaly detection is the way of identifying abnormalities in the graph

which deviate from the norm. The four types of anomalous detection are

anomalous node detection, anomalous edge detection, anomalous subgraph

detection and graph level anomaly detection.

The anomalous node detection detects if a node is anomalous. This is

useful for our project as this is a straightforward way to detect if there is a

compromised or malicious machine on the network. Anomalous edge

detection is useful for our project as it is what you can use to find malicious

packets in the network. Subgraph detection is a more complicated way to

detect anomalies, it uses the node detection and motifs to find if there is an

anomaly. Graph level anomaly detection detects graphs inside the graph that

are anomalous.

The state of the art for graph neural networks are static or dynamic

graphs, different types of anomalous node detection. This is also the most

86

researched type of anomalous detection, which can make it easier for us to

build. Trying to create a dynamic graph that detects anomalies using any of

the four ways is a large achievement for an undergraduate student group.

The simplest way for us to make a novel way to solve anomaly detection is

to create a method under these four types of detection.

The first framework that we researched was the graph convolutional

network-based graph autoencoder (GAE). This graph changes the decoder

depending on the perspective of the method. This is often used when there

is a non-linear complex relationship between the nodes. This identifies the

anomaly by scoring the differences in the basis of reconstruction errors. The

autoencoders have dual encoder-decoder architecture.

Graph convolutional networks are used when the data should be run

with unsupervised learning. These are very similar to convolutional

networks, as they are localized to their neighbors. This is used to predict

interactions rather than the individual. One of the problems with graph

neural networks is that there is no inherent order in the nodes, all that

matters is the layer and how many edges you go through to see the

neighborhood.

In order to make meaningful progress on this problem, we needed to

first know the current methods that have been developed in the domain of

detecting anomalies in digital communication networks. Fortunately, there is

a paper that surveys and categorizes most of the methods that have been

developed over the past couple of years related to the subject, although in a

more general setting of arbitrary abnormality detection.

As we saw in the table, there are two major problem domains: static

graphs and dynamic graphs. The former refers to algorithms which perform

87

anomaly detection on snapshots of networks. The latter refers to algorithms

which consider the time evolution of the network. For both of these, the

most approachable anomalies are node and edge-level detection. The more

difficult being subgraph and graph-level detection.

For the most part, state-of-the-art anomaly detection algorithms use

the simpler GNN model that only employs node embeddings. That is, they

primarily work off the following equations:

[13]𝑚
𝑁 𝑢()

= 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒
𝑛𝑜𝑑𝑒
(𝑘) ℎ

𝑣
𝑘() : 𝑣∈𝑁 𝑢() ∪ 𝑢{ }{ }()

[13] ℎ
𝑢
𝑘+1() = 𝑢𝑝𝑑𝑎𝑡𝑒

𝑛𝑜𝑑𝑒
𝑘() ℎ

𝑢
𝑘(), 𝑚

𝑁 𝑢()()

Note, for generality, these models may have aggregate and update

functions that change with each iteration as well. This allows the GNN to be

split into stages, much like a standard convolutional neural network where

there are layers for convolution / encoding, padding, and decoding.

The general attack strategy to solve the network anomaly detection

problem involves taking an attributed graph, processing it through a GNN to

extract relevant features, then measuring its distance from some set

standard. That is, we take in a graph with some prespecified embeddings,

run it through a GNN for some fixed number of iterations (where the update

function is learned via backpropagation), identify some threshold on the

resultant embeddings which defines the model’s confidence in the nodes

88

exhibiting anomalous behavior, and finally measure distance from this

threshold to classify nodes.

A representative state-of-the-art model that uses this technique is the

abnormality-aware graph neural network (AAGNN) [17]. This model uses

community behavior as the background that defines normal behavior.

Anomalous node behavior, then, is defined as those nodes which deviate

from the behavior of their neighbors. By deviation, we mean the following.

Nodes having high confidence in representing average behavior in their

neighborhood are used as labels to learn a hypersphere boundary within the

latent feature space produced by an autoencoding GNN procedure. Nodes

that fall outside this hypersphere boundary are considered anomalous.

For the case of solving the more difficult problem of subgraph anomaly

detection, a representative state-of-the-art model that uses the

autoencoding technique is the hybrid-order graph attention network

(HO-GAT) [18]. This model uses an autoencoding GNN procedure to learn

suitable node representations and motif instance representations of a given

graph. The node representation focuses on the fine-grained details of a

graph while the motif instance representation focuses on connectivity

patterns within the graph. The combination of these two gives a

representation that allows analyzing properties both at the node-level and

subgraph-level. Finally, the reconstruction error is used as the abnormality

score of nodes and motif instances respectively.

As of now, anomalous behavior is defined in terms of what nodes are

acting outside the norm of the network. With the right embedding or attack

focus, this would correspond to the malicious actors themselves. However,

this is not true in general and may instead just identify the symptoms of an

89

attack. A particular example is DDoS attacks where botnets can be used to

target a single node in waves without the sources acting anomalous

themselves.

This problem is addressed via subgraph-level detection. However, as

mentioned before, the research on subgraph anomaly detection is limited

and requires expensive computation to construct motifs, multi-stage graphs,

and other structures that can optimally be used to analyze subgraphs. We

offer an alternative approach inspired by backpropagation.

The main idea is to identify abnormal nodes and then backpropagate

the abnormality to find nodes which contributed to the behavior. This is

trivial for attacks involving only one malicious actor. However, for malicious

subgraphs, note that such subgraphs generally induce abnormal behavior by

acting in unison within some sufficiently small window of time (i.e., like a

hive mind).

As such, if we attempt to backpropagate, the contributions of all the

nodes in the subgraph should be around the same. With this assumption, we

should be able to recover the full subgraph that contributed to the

abnormality. With repeated applications on a sliding time window, this should

also prune out legitimate nodes which coincidentally acted in unison with the

malicious subgraph.

The general attack strategy to detect a group of nodes that are the

source of anomalous behavior in the network is done in three stages. In the

first stage, an abnormality-aware graph neural network to first identifies

nodes in the graph that are behaving abnormally. In this case, abnormal

nodes are those which deviate from the behavior of its neighbors. From

90

there, the abnormality scores of each node are used as the new node

embeddings and reverse all the arrows.

In the second stage, another graph neural network is applied, which

propagates the abnormality score through the network in reverse by the

same number of iterations as the forward direction. This way, the graph

neural network should be able to assign to each node a score based on its

contribution to the overall abnormality detected within the graph. Nodes with

similar contributions are then grouped into single nodes. This can be done by

grouping with staggered thresholds, much like how a multi-stage graph is

constructed.

In the final stage, the method from stage one is used again, but this

time with an additional embedding tracking where the cumulative

contributions of each grouped node go. The grouped node with the highest

contribution to the reconstruction of the abnormality score is then labeled as

abnormal for each abnormal node identified in the first stage.

With the featurized data, GNNs can be trained to learn the underlying

patterns of normal network activities. The graph structure allows the model

to capture dependencies and correlations between different entities in the

network. During the training process, the GNN learns to recognize the

expected patterns of communication and relationships, establishing a

baseline for normal behavior.

Once trained, the GNN can be applied to new network traffic data.

Anomalies are identified by observing deviations from the learned patterns.

The model can recognize unusual patterns of communication, unexpected

connections, or abnormal traffic flows. The versatility of GNNs in capturing

91

complex relationships enables them to detect anomalies that may not be

apparent through traditional methods.

The anomaly detection results obtained from the GNN can be

integrated into network security alerting systems. When the model identifies

suspicious behavior, alerts can be generated, notifying network

administrators or automated response systems. This integration enhances

the proactive nature of network security, allowing for timely responses to

potential threats.

During the overview presented in the paper Graph Anomaly Detection

With Graph Neural Networks: Current Challenges [1], the authors introduce

the state of the GNN research field today, including some of the different

types of problems that GNNs are applied to. In the static graph research

area, the authors present three different types of problems: anomalous node

detection, anomalous edge detection, and anomalous subgraph detection. It

appears that the largest amount of work has been done in the node

detection areas.

Looking at anomalous edges or subgraphs could be an opportunity for

experimentation and contribution to the current literature. The authors note,

“Anomalous subgraph detection is far more challenging than anomalous

node or edge detection.” [1] Since the authors claim that “Research on such

anomalous edge detection in a static graph has been relatively limited.” [1]

We are also presented with the idea of dynamic graph anomaly

detection. The authors clarify the meaning of a static versus a dynamic

graph by stating “Unlike a static graph, temporality is an important factor in

a dynamic graph whose structure or attributes change over time.” Since our

problem of cybersecurity anomaly detection takes place in real time with a

92

changing graph, this topic is extremely relevant to the scope of our project

in terms of real-world applicability. The authors highlight work in node and

edge detection, but it seems that there is no current literature addressing

dynamic anomalous subgraphs using GNNs. Depending on the difficulty of

the problem, this could be another opportunity to add to the existing

literature by constructing a GNN which detects dynamic subgraph anomalies

or investigates the possibility of doing so.

In addition to this explanation of the current literature, the authors

finish up by giving a few suggestions of problems they think are worth

exploring, given the research landscape at the moment. It would be

worthwhile to explore the possibility of incorporating some of these ideas

when my team sits down to design our own GNN. The below figure

summarizes the GNN methods mentioned in this overview paper.

This overview paper was the first thing my sponsor gave the team to

read and we ended up with a lot of questions. While the paper delivered a

broad view of how GNNs worked, it didn’t dive into the technical specifics

and discussed most of the algorithms it mentioned at a higher and more

abstract level. The paper also lists many current or leading methods, but

fails to mention or compare the performance of these methods with any type

of results or statistics. Finally, the authors threw around a lot of acronyms

and technical GNN terms without explanation, which was confusing to

someone just learning about the topic for the first time.

At this point, my group began to dive into the more technical structure

of what exactly a GNN was and how it worked. We accomplished this with

the help of two interactive papers: A Gentle Introduction to Graph Neural

Networks [2] and Understanding Convolutions on Graphs [9].

93

Essentially, the GNN pipeline is very similar to that of a Convolutional

Neural Network. The difference is the convolutional versus graph blocks. A

Convolutional Neural Network takes a grid as input and compute a

convolutional operation multiple times (with some other operations such as

pooling between layers).

The purpose of this is to extract features from the grid (typically a

digital representation of an image) in order to learn on in a more traditional

multi-layer perceptron neural network in the last layers of the network.

Similarly, the Graph Neural Network takes a graph as input and then

computes on that graph in order to achieve a transformed version of the

graph which can then be trained on a more traditional neural network

structure to make an anomaly detection or to tell us more about the graph.

This process is illustrated in the figure below. [12]

Figure 7. Illustration of the Graph Neural Network machine learning pipeline.

[12]

94

The message-passing computation, which makes up the meat of the

graph operation in the graph blocks can be summarized using the following

equation [1]:

[13]

Initially I, along with the majority of my team, found this equation

confusing. However, the interactive part of the paper illustrates this

operation fairly well. Figure 8 is one illustration of information passing

through the graph layers of a GNN.

The nodes pass information to the nodes they are connected to, which

gives us information about the connectivity of the graph and retains the

context of the graph structure. The paper explains that this is especially

important, since many other approaches may lose the context that the graph

connectivity provides. The authors provide another graphic to illustrate this,

where the message passing process pools the neighboring embeddings for a

single node (these are called messages, hence the name message-passing)

and then passes these through a neural network with a traditional network

structure. [12]

95

Figure 8. Message-passing in a Graph Neural Network. [12]

By reading these papers as a group, we began to round out our idea of

what a Graph Neural Network was, how it worked, and the current state of

the research field. Our sponsor has suggested another paper called Edge

Detect: Edge-centric Network Intrusion Detection using Deep Neural

Network [19] as well.

This paper purports to address the application of a Recurrent Neural

Network approach to a cybersecurity problem on the UNSW15 dataset [1].

Reading this paper helped our team to understand how the application of the

Graph Neural Network can increase prediction accuracy on a dataset that the

team is already quickly becoming familiar with via experimentation.

In addition to this reading, the sponsor for my project has

recommended a number of coding tutorials, beginning with a high-level

introduction to neural networks, a Scikit-learn tutorial, and some examples

and tutorials on PyTorch Geometric [20]. Geometric is a library which is

specifically dedicated to the creation of Graph Neural Networks, and was

extremely useful during the implementation of the GraphSAGE GNN.

96

The sponsor also recommended a book called “Graph Representation

Learning” on Graph Neural Networks and graph representations in general

[11]. We used this book to help us understand some of the more theoretical

aspects related to the topic. While most of our work relied on other papers

and sources, this book could be a good asset for future groups continuing

this project.

The depth of insight offered by the book provides a solid foundation,

enabling us to navigate the intricacies of GNN development with a more

nuanced understanding. Armed with this targeted knowledge, the likelihood

of falling into common pitfalls and rookie mistakes in the design and

experimental phases decreases, setting the stage for a more robust and

informed approach to our GNN implementation. This foresight underscores

the potential instrumental role that this book may play in bolstering the

theoretical underpinnings of our project, ultimately contributing to its overall

success.

Anomalies are defined as “one that appears to deviate markedly from

other members of the sample in which it occurs” [21]. [22]

97

Figure 9. An illustration of conventional anomaly detection versus graph

anomaly detection processes. [22]

Graph Anomaly Detection differs from conventional anomaly detection

in that it doesn’t just cluster anomalies based on a vector embedding, but

through its relationship between other users. [22]

98

Figure 10. “A Comparison Between Existing Surveys on Anomaly Detection.

We mark edge, sub-graph and graph detection as in our survey because we

review more deep learning based works than any previous surveys.” [22]

4.1.10 Dynamic Graphs

One of the biggest problems with dynamic graph neural networks is

the computationally expenses to constantly update the network. Also, adding

a new node means that there is no information of that node, making it hard

to predict the normal and anomalous behavior of the node. Another major

issue regarding dynamic graphs is that there are lots of subgraph changes

because of the new nodes. Delving deeper into dynamic graphs, we

examined structural temporal graph neural networks. Structural temporal

graph neural networks are a type of subgraph anomaly detection.

One of the differences with anomalous detection on dynamic graphs is

that you cannot find an anomalous edge or node on one timestamp, which

99

differs from static graphs. This problem occurs because the node and edge

can change at any time. Structural Temporal graph neural networks solve

this problem by looking at the structure over a short period of time and

observing the changes. The dynamic graph is modified into a smaller, more

meaningful subgraph that is then checked for abnormalities.

The previous models mentioned work on static graphs. However, there

is also interest in developing tools for detecting anomalies in dynamic

graphs. Since these are one of the more difficult problems to get optimal

algorithms for, there is very little literature on the subject. The general

attack strategy involves restricting to a sliding window where an

autoencoding model attempts to learn evolving patterns.

A representative state-of-the-art model that uses this exact technique

is the dynamic evolving graph convolutional network (DEGCN) [23]. It

consists of three stages. The first stage uses a sliding window to generate

multi-scale graphs. That is, graphs whose nodes represent a collection of

nodes in the original graph connected by some random walk. It is

multi-stage in the sense that the random walk can be seeded with multiple

values and taken through multiple iterations to generate graphs that provide

different subgraph representations of the original graph.

The second stage uses a graph autoencoder model to extract features

of the node embeddings in the multi-scale graph which corresponds to

patterns found along the time axis. Finally, The third stage combines the

features extracted from the second step and feeds it through a standard

neural network (multi-layer perceptron network) [24] to get an abnormality

score at both the node-level and graph-level.

100

A Static Graph Network is a network whose nodes and edges don’t

change over time. Dynamic representations are the counter to this, their

edges, nodes, and topologies do change over time. Dynamic representations

can be good for PCAP data since requests become less significant over time

due to the large number of connections being made in a short span of time

and the limited time that a session exists for.

Figure 11. “Overview of GNN-DSR.” [25]

The model converts the graph into User and Item embeddings. The

user represents entities which in the context of PCAP data means routers or

network endpoints, while items represent events or trafficking patterns.

Items and Users are inputted into different embeddings. These embeddings

101

are then used to find short-term dynamic interests and long-term static

interests.

4.1.10.1 Loss Function

[13]

The function takes every node connection and inputs each of the nodes

and edges into the encoder independently, then inputs the result into a

decoder. The result of the decoder is then compared to an adjacency tensor.

4.1.10.2 Short-Term Dynamic Interests

[13]

The Long-Short Term Memory is used in this case because it works

sequentially which allows it to be dynamic. The X(i) in this cause represents

the user embeddings while the y(j) represents the item embeddings

102

4.1.10.3 Long-term Static Interests

[13]

This uses a Graph Attention Network, a modification of a normal

multi-attention network to take into account edges. This is used to take into

account information in the long term, but it is non-sequential.

4.1.10.4 Interactional Representation

The Short-term Dynamic Interests are combined with the Long-Term

Static Interests to form the Interactional Representation through the

equation:

[13]

The Interactional Representation is formed by the dot product of the

Short-Term Dynamic Interests and the Long-Term Static Interests.

103

4.1.10.5 Relational Graph Aggregation

The User and Item interactional Representation is then used to create

a Relational Graph Aggregation.

[13]

[13]

4.1.10.6 Latent Factor of User and Item

[13]

The Latent Factors are then aggregated in the output function

[13]

4.1.11 Python Libraries

4.1.11.1 Pytorch

Besides getting a solid grip on Neural Networks, a significant chunk of

our project's success heavily depended on the tools and frameworks we

chose. With our focus squarely on the design and optimization of Graph

Neural Networks (GNNs), we really couldn’t overlook the importance of

selecting the right platforms. That's where PyTorch and PyTorch Geometric

104

(PyG) enter the picture. Having had the chance to look over their

capabilities, our group was convinced these were the tools we needed,

especially considering the complex nature of our project. Let's break down

why.

Reading through the articles provided by our sponsor, we gained a

strong understanding of PyTorch and its applications. In a general sense, it's

a deep learning framework, and in recent times, it's been gaining traction in

both the academic and industrial fields. What makes PyTorch stand out is

how it is built - it's all about dynamic computational graphs. It meant that

our team had the opportunity to play around with model development,

making adjustments on the fly, without needing to dive deep into the code

every single time.

Given our aim to develop a Graph Neural Network, PyTorch was the

ideal platform choice. Its inherent design promotes quick experimentation,

something we certainly took advantage of as we refined our GNN model.

When comparing with some other tools out there, we noticed PyTorch

uses what's known as dynamic or "eager" computation. Instead of

predefining everything and then running the code, operations in PyTorch are

executed as they're called, almost like having a conversation. This kind of

real-time feedback is crucial for troubleshooting.

GNNs aren’t simple. There are bound to be hiccups along the way.

PyTorch, with its dynamic computation, made it much easier for us to

understand and adapt our model when issues cropped up during

development.

105

PyG is a library built upon PyTorch, but built especially for geometric

deep learning. PyG has efficient ways to manage graph data, which was a

huge time-saver for us during the implementation of our project. PyG was

one of our main tools for GNN development. With so many built-in features,

we were able to use it to have frameworks to work with rather than starting

from scratch on a relatively unfamiliar topic, giving us more time to refine

and adapt the approach we used.

Based on our research and experience, PyTorch Geometric isn’t just

about ease-of-use when working with GNNs. It's also built for speed,

particularly when dealing with extensive graph datasets, thanks to its

optimized CUDA kernels. In the case of anomaly detection, which is the main

goal of our project, we have to prioritize runtime because of the amount of

data we are using. The faster we are able to process data, the quicker we

can spot potential issues, PyG was the perfect library to work with for our

application.

The more we delve into this field, the more we see how the community

around the tool could benefit our team. PyTorch, together with PyG, has a

vast and active community. This means there's a ton of resources out there,

from tutorials to pre-trained models. When we got stuck, there was usually

someone out there who faced the same issue. As we navigate through the

use of GNNs for anomaly detection, having this community was invaluable.

Sharing challenges, solutions, and insights can only speed up our project's

progress.

One thing we’ve learned is that PyTorch doesn’t live in isolation. It can

work with a ton of other tools. Whether we're talking data visualization, data

processing, or even getting our solution out into the real world, PyTorch is

106

built to play nice with other systems. Anomaly detection with GNNs is a

multifaceted task. We needed to see results and process various data.

Hopefully, future groups may even tie our solution into bigger systems. With

PyTorch, we didn’t have to worry too much about making all these different

pieces fit together.

The deeper we dive into the world of Graph Neural Networks and

anomaly detection, the clearer the picture becomes. It's not just about

understanding the theory. The tools and platforms we opt for played a

pivotal role. From what we can tell, vanilla PyTorch, coupled with PyTorch

Geometric, offers us a solid foundation. With these in our toolkit, we were

able to meet the demands of our sponsor while producing a solid

implementation of a graph neural network. With this strong knowledge of

tools like PyTorch, we began our project with a better understanding of what

work we needed to put in to achieve our final goals.

Tensors:

Tensors are similar to a numpy array, but their operations can be done

in the GPU. Due to the non-sequential nature of many of the operations

needed for a neural network to train and make predictions, these operations

can be parallelized and done at a larger scale using a GPU. Tensors can be

scalers, arrays, or multi-dimensional arrays.

It can hold from 8 to 64 bit integer or float values. Tensors also allow

for each neural layer to be back propagated globally through one

optimization and loss function. This can be done because it keeps track of

operations through a Directed Acyclic Graph, where the nodes are tensors

and the directed edges are operations tensors do on other tensors. The

107

.backward() function goes backward through this graph to determine the

gradients for each tensor. [26]

Figure 12. Example of a Compute Graph expression. [26]

The prediction of the model can be input into a loss function along with

the actual value and because of the Directed Acyclic Graph, the model knows

the gradient of each tensor with respect to the loss value. Running

optimizer.step() will take these gradients and use them to update each

tensor.

108

In this example we train a model on randomly generated data. We do

this by instantiating a loss function, which determines how “off” the

prediction is from the actual result. We also instantiate an optimizer function

which uses the gradients from the calculation of the loss function using the

output to change the tensors.

This code converts an array into a tensor, this can also be applied to

NumPy arrays. This is useful when needing to convert a dataframe that was

imported from a csv file into a tensor, so that it can be inputted into a

pytorch model.

This form of instantiating arrays can generate a tensor by the

dimensions given in the parameter. These values don’t necessarily have to

be ones but can be zeros, random, or junk memory. This is useful for

instantiating neural weights or random test input.

109

torch.arrange generates values similar to the range function, but

instead of a generator it creates a tensor. It creates a tensor with the values

from the first parameter and exclusive to the second parameter with the

third parameter being the step.

torch.linspace generates values within a range such that they are

evenly distributed. The first and second parameters are the boundaries and

the third parameter is the amount of points within the boundary.

torch.nn.Linear:

This acts as a layer, taking in input of an array the size of the first

parameter and multiplying it by the objects matrix, which is dimensioned

such that its output is the size of the second parameter. This matrix is a

trainable tensor in the model, meaning that backpropagation changes the

weights of the matrix and possibly biases if biases are being used.

110

torch.nn.Embedding: [27]

Figure 13. torch.nn.Embedding vector representation [27]

torch.nn.Embedding is used to give a vector representation to nominal

data. Nominal data is just words in a fixed vocabulary. It works similarly to

torch.nn.Linear but the vector that it takes as input is usually a one-hot

vector meaning that its output is usually one of the rows. This is because it

is used as a lookup table for what a word means in the context of the model

through a numerical vector representation.

111

Torch.nn.Parameter:

torch.nn.Parameter is similar to torch.nn.Linear in that it acts as a

convolutional layer taking in an array of a given dimension and outputting an

array of possibly another dimension, by multiplying the inputted array by its

matrix. But torch.nn.Parameter is instantiated by a tensor, allowing it to

have predefined weights, as opposed to torch.nn.Linear which uses random

weights.

Models:

Pytorch models have at least two functions. The init function which is

run when a model object is instantiated and the forward function which is

called when a model object is given input.

112

In the example code the init function is creating the layers for the

model but it can also create other functions that can be used when a model

is given input.

This code handles model input using the functions declared in the init

function.

Message Passing:

The message passing class takes in the features of the nodes and the

edge between the nodes which is carried into an aggregate function along

with connecting node edges. The aggregation function takes either the

113

mean, sum, or max of all messages being passed to the node. The value

generated from the aggregation function is then added to the node

embedding. The propagate function uses the edge_index to orchestrate the

order of message, aggregation, and update function.

torch_geometric.utils.add_self_loops:

torch_geometric.utils.add_self_loops takes in the edge index and the

number of nodes in the graph as first and second parameters respectively

and returns another edges index such that each node is connected to itself

torch_geometric.utils.degree:

torch_geometric.utils.degree takes in the edge index as a parameter

and returns a tensor for the degrees of each node. This is usually done for

data normalization before propagation through message passing.

4.1.11.2 Numpy

NumPy is a Python library that provides tools for numerical operations.

It is commonly used for mathematical computations in various scientific and

engineering applications. NumPy is the fundamental package for scientific

computing in Python, and it serves as the foundation for many other libraries

and frameworks in the Python ecosystem. The array object provided by

NumPy is a powerful data structure that enables efficient storage and

manipulation of large datasets.

114

A good comparison to show the efficiency of arrays in NumPs to

compare it to normal lists in python. A list in Python needs to store lots of

information about the data before even looking at the data. It needs the

size, reference count, object type, and object value. Also as the data is not

stored consecutively and uses pointers, it wastes some computing time.

NumPy improves this by storing all the data consecutively, and uses the

minimal amount of space storing the data type. This causes it to be much

faster as reading in less information into memory, parsing less information

into memory and no need to type check.

Arrays in NumPy are one-dimensional or multidimensional, and they

can hold elements of any data type. They can be created from Python lists or

other iterable objects. One of the key features of NumPy arrays is their

ability to perform element-wise operations, such as addition, subtraction,

multiplication, and division. This vectorized approach to computation allows

for efficient handling of large datasets, a crucial aspect in numerical

computing and machine learning.

The ndarray, or N-dimensional array, is the primary data structure in

NumPy. It is a flexible container for homogeneous data that can be

manipulated using various array operations. NumPy arrays support

broadcasting, which enables operations on arrays of different shapes and

sizes. Broadcasting is particularly useful when working with datasets of

varying dimensions, facilitating concise and expressive code. In addition to

arrays, NumPy provides a range of mathematical functions that operate

element-wise on arrays, making it a versatile library for scientific computing.

NumPy's array operations and mathematical functions are built on

efficient, low-level implementations in C and Fortran, allowing for efficient

115

numerical computations. It integrates very well with other libraries, such as

SciPy and Matplotlib. The ability to create and manipulate arrays efficiently

makes NumPy an essential tool for tasks ranging from simple numerical

calculations to complex scientific simulations.

4.1.11.3 Sci-kit Learn

DecisionTree:

Decision Trees are a classification model. They use classified data to

classify more data. The Decision Tree creates a tree of feature thresholds

that it inputs data from the top down to make a classification. Feature

thresholds are conditionals that compare a feature from the data input with

some predefined value. This predefined value is based on how many

classifications that it separates, which is done through the Gini impurity

function or the entropy function. This is done for every feature, and is

ordered into a tree by how pure the feature threshold is. [28]

Figure 14. “Elements of a decision tree” [28]

116

The Gini impurity value subtracts 1 by the sum of squares of each

probability that it will get a classification or the ratio that it produces a result

when data is fitted to it. This makes it so the lowest possible value is when

the feature threshold only produces one output making a result of 0 and it

makes it so the highest possible value is when the feature threshold

produces an equal distribution of outputs.

[30]

The Entropy impurity instead of squaring the probability of an output

and taking the sum of all squares to subtract 1. It takes the negative of the

probability times log base two. Since the probability is a fraction the

negative is canceled out. The range of this function is greater but the most

pure value is still zero while the least pure value is still the most distant

value from zero.

[31]

Establishing a feature threshold is easily done when the feature is a

Boolean or a nominal typed value. But when it is an Integer or a float value

there can be an infinite number of feature thresholds. The decision tree

handles this by ordering all the values for that feature in the data set, and

117

testing every value between two values for its Gini impurity and selecting

the lowest value.

This function finds the feature threshold for each corresponding

feature and orders it into a tree using the Gini impurity function.

118

The dictionary generated from the previous function can then be

inputted into the predict example function with the second parameter being

the input into the tree. The predict_example function checks if it has reached

a leaf in the tree, if it does then it returns the leaf. If it hasn't reached a leaf,

it checks which side of the feature threshold that the input falls under and it

returns a recursive call to a node down in that direction.

RandomForest:

Random Forest is a classification model that uses a number of

randomly generated decision trees. Each randomly generated decision tree is

based off of a bootstrapped dataset: a dataset that is generated by randomly

selecting values from another dataset that is inclusive of duplicate values.

Each feature in each layer is selected from the best of two random

non-repeated columns from the corresponding bootstrapped dataset.

The model makes predictions on new data by inputting the new data

into each tree and returning the most common output. The model then uses

the values not used in each decision tree's bootstrapped data set to test its

accuracy. It then uses this measure of accuracy to decide how many

variables in each step it randomly selects.

119

[32]

The code isn’t exactly from the sklearn library. This code is from a user

called Carbonati in a repository called random-forests-from-scratch but it

functions similarly to how the sklearn library functions. The function

generates a node in a decision tree for a random forest using

pre-bootstrapped data and max number of features it can look at one time

as its parameters.

It loops through until it looks at the maximum number of features it

can look at once, in each loop it picks a random feature that hasn’t already

been looked at and it finds the point in-between each column of features

where the most amount of information is gained, the information gained

120

function is nearly the same as the purity function in the Decision Tree but it

uses entropy instead of Gini in the example. Once it finds that point it sets

the current node to a dictionary containing the amount of information

gained, the point in the array, and everything to the left and right of that

point.

[32]

This function uses recursion to define a Decision Tree in Random

Forest. The bootstrap data in the left and right child is the information on the

respective side of the split point. If either is empty or there is less than the

predefined limit it turns into a terminal node, meaning that it returns the

highest classification left. Otherwise it generates a node using the

find_split_point function and it recursively calls itself, but the parent node is

the node it is currently looking at and the depth is increased by one.

121

4.1.11.4 Pandas

Pandas is a Python library that provides tools for data analysis. It is

commonly used for data preprocessing in machine learning tasks. The high

performance combined with relatively simple interfaces makes it a very

popular library. Pandas is built on top of the NumPy library, allowing for

seamless integration between the two when manipulating data. The two

types of classes that Pandas provides users are Series and DataFrames.

Series are one-dimensional objects capable of holding any data type.

It can be created from a list, NumPy array, or a Python dictionary (key-value

store). One of the key features of the Series data structure is its ability to

handle missing values. Series also allows for vectorized operations such as

addition, subtraction, multiplication, and division. This is especially useful in

the field of machine learning where data is transformed into vectors with

embeddings. Leveraging mathematical operations on this data allows

developers to perform something like a nearest-neighbor search with cosine

similarity.

The DataFrame structure is what Pandas is most known for. It is a

two-dimensional object that follows a tabular structure. By using rows and

columns, developers can easily manipulate their data during preprocessing.

DataFrames can be created from many files in a very simple manner. Pandas

provides developers with many IO tools to easily get data to and from a data

frame. An example of this is the read_csv function that will turn a CSV file at

some provided path into a Pandas DataFrame. Alongside this, Pandas allows

DataFrames to be created from Excel, JSON, and HTML files, as well as SQL

databases. Both data types support indexing which is especially useful when

we want to split data into different sections such as a training and testing

122

set. During training the indexing can be used for batching, passing data in in

batches can lead to more efficient training.

Dataframes can be instantiated through a dictionary where the key is

the column name and the value is an array containing the values in the

column from top to bottom.

Dataframes can also be instantiated with an array of dictionaries,

where each dictionary represents a row in the dataframe and each key in

each data frame represents a column with the value in the corresponding

key the value in the column.

They can also be instantiated with just arrays. A two dimensional array

where each array represents a row in the dataframe and another array in the

column parameter which represents the column name for each of the values

in each of the arrays in the two dimensional array.

123

Data frames are also able to be imported from excel and SQL files.

Iloc uses Integers to index values in the data frame. As opposed to

putting in the name of the column followed by the row that you need to

access. Iloc uses an Integer, this allows the data frame to be treated as if it

is a two dimensional array as opposed to something close to a dictionary.

4.1.12 Packet Capture

The way that we are able to know about the data communication

between the machines is by using PCAP (packet capture) files. These files

show us the raw data that is being passed through the network. PCAP files

work by sniffing the network, which our graph neural network can analyze.

We have used PyShark to be able to obtain live data for our program.

To get started on research into anomaly detection using graph neural

networks, we first read about a paper on all the types of graph neural

networks that exist and what are possibilities that we can consider. We are

given PCAP files with the UNSW database, but it is much easier to modify the

124

data when it is in a csv format. We used PyShark to do this conversion so

that this works for our live data that we receive in our simulation

environment.

Packet capture files, typically in PCAP or pcapng format, serve as a

record of network traffic, capturing individual packets exchanged between

devices on a network. In the context of anomaly detection, these files

become instrumental in understanding normal network behavior and

identifying deviations that may indicate security threats or operational

issues.

Anomaly detection using packet capture files faces challenges such as

the sheer volume of data, diversity in network activities, and the need for

efficient feature extraction. However, the richness of information in PCAP

files presents opportunities for fine-tuned anomaly detection algorithms.

One of our tasks given by our sponsor was to create a script to

featurize Packet capture files using PyShark which is a library for Python.

Packet capture files, commonly in PCAP format, provide a granular view of

network traffic, making them a valuable resource for anomaly detection

systems. It was important for the concept of our project to outline the

methodology and implementation of utilizing PyShark, a Python wrapper for

Wireshark, to process PCAP files and extract features relevant to anomaly

detection.

4.1.12.1 PCAP Parser

As previously mentioned, PyShark is a Python library that serves as a

wrapper for Wireshark's packet dissection capabilities. It provides a

125

convenient interface for accessing information within PCAP files, enabling the

extraction of packet-level details.

The provided Python script demonstrates the use of PyShark to

featurize PCAP files. Features extracted include standard network attributes

such as source and destination IP addresses, port numbers, packet length,

and timing characteristics. Additionally, the script captures protocol-specific

details like TCP flags.

The features extracted from the packet capture files using PyShark

provide a comprehensive view of the network dynamics. These features,

when organized into a graph structure, can represent the interactions and

relationships among different entities within the network. Nodes in the graph

can represent devices or endpoints, and edges can represent communication

links between them.

Future research in this domain could explore enhancements to the

featurization process, considering additional features or refining existing

ones for improved anomaly detection performance. Furthermore,

investigating the interpretability of the GNN model outputs could provide

valuable insights into the specific characteristics that lead to anomaly

classifications.

We were able to use the research we made to create a python script

that took the wireshark pcap data and converted it to featurized data in a

CSV.

126

4.1.13 GNN Frameworks

4.1.13.1 Graph Convolutional Networks (GCN)

Inspired by how standard convolutional neural networks can be

thought of as learning on the spectral domain of an input signal, graph

convolutional networks define a spectral domain analogue for graphs and

hence a convolution analogue for graphs [33]. In particular, in a standard

convolutional neural network, we can think of the input image as a

two-dimensional wave signal. Applying a Fourier transform to the signal

moves us from time domain to frequency domain which corresponds to the

spectral domain of the associated Laplace operator on signals. Convolution in

the time domain is then equivalent to multiplication in the frequency domain

(read spectral domain).

For graphs, we define the Laplace operator on the adjacency matrix

representation of a graph as the normalized difference between its degree

and itself. This Laplace operator is independent of the specific adjacency

matrix used to represent the graph. Since this operator is a linear

transformation, there is a corresponding spectral domain for graphs.

The Fourier transform for graphs would then be the corresponding

change of basis algorithm from vertex domain (as encoded by the adjacency

127

matrix) to spectral domain (corresponding to our Laplace operator). We now

define convolution of graphs as the inverse fourier transform over matrix

multiplication in the spectral domain. This convolution can be shown to be

precisely an aggregator transformation that takes node data and propagates

across node neighborhoods. [34]

Figure 15. Illustration of a “Multi-layer Graph Convolutional Network (GCN)

with first-order filters.” [34]

An advantage to applying convolution in the spectral domain is that we

can avoid node embedding aggregation and instead focus on fixed matrix

multiplication. This allows us to leverage the full power of numerical linear

algebra when performing computations and training using backpropagation.

This also gives a precise unique decomposition of a graph into its spectral

components which can be used to create an autoencoder for the graph that

accurately extracts the necessary graph-level features.

128

A disadvantage to this approach is that the Laplace operator requires

performing matrix factorization which is computationally expensive and does

not scale well for larger graphs. To combat this, standard methods tend to

restrict themselves to ordering the spectral data by eigenvalue and

calculating the first couple of eigenfunctions to be able to apply a Fourier

transform. This provides an approximation of the Laplace operator which

may be sufficient for some graphs but not all.

4.1.13.2 GraphSAGE (Graph Sample and Aggregation)

As previously described, a GraphSAGE essentially attributes to each

node of a graph some data called an embedding [35]. Parameterized

sampling and aggregate rules then propagate and accumulate these

embeddings between neighboring nodes to move to the next layer/step in

the network. After some fixed number of iterations, the resultant

embeddings correspond to the output of our GraphSAGE.

Training is done by learning the parameters via backpropagation as

would a standard neural network. The result is a model that can learn node

properties dependent on the local structure of the graph, i.e. the

neighborhood structure. [36]

129

Figure 16. Illustration of the GraphSAGE feature aggregation. [36]

There are some major advantages to this approach. GraphSAGE is

quick and easy to implement since it follows the same principle as a

convolutional network but where adjacent pixels are now interpreted as

neighboring nodes. This means that GraphSAGE effectively captures

neighborhood information and can learn local graph structures efficiently. It

moreover supports mean, LSTM, pooling, and other common convolution

procedures.

However, there are also some disadvantages to this approach.

GraphSAGE can only consider up to some fixed neighborhood depth when

learning node properties which are defined as the iteration count. This

means that trial and error would need to be done to identify the appropriate

iteration count for learning some ideal property. The drawback is that

properties dependent on global network structure cannot be learned via this

130

approach for arbitrary graphs since this requires increasing the iteration

count proportional to the maximum path length of the graph.

4.1.13.3 Graph Attention Networks (GAT):

Graph Attention Networks (GATs), a recent advancement in the field of

neural networks, offer an intriguing approach to dealing with

graph-structured data. Originating from graph neural networks (GNNs), GATs

incorporate attention mechanisms, a concept initially used in

sequence-based models like those in language translation, to enhance their

processing of graph data.

This integration of attention mechanisms allows GATs to allocate

varying levels of importance to different nodes in a graph, which is essential

for making more accurate predictions and gaining deeper insights. By doing

so, GATs can focus on the most relevant parts of the graph, a feature that

distinguishes them from traditional GNNs. [37]

131

Figure 17. Illustration of Graph Attention Networks. [37]

GATs stand out because of their unique ability to adaptively learn

which nodes in a graph are more significant, thereby focusing on these

nodes during the learning process. This adaptability makes them suitable for

various types of graph data, ranging from social networks to biological

systems.

The attention mechanism employed in GATs ensures that they can

selectively aggregate information from neighboring nodes. This selective

aggregation leads to more precise learning outcomes, as GATs concentrate

on the most relevant information available within the graph. Furthermore,

GATs are capable of handling graphs with a diverse range of node types and

connections, showcasing their versatility.

However, despite these strengths, GATs also come with certain

limitations. One major drawback is their high computational demand,

particularly when dealing with large graphs. The detailed attention

calculations required by GATs can be resource-intensive, which poses a

challenge, especially in scenarios involving big data. Additionally, fine-tuning

GATs can be complex, as their intricate nature makes optimizing their

settings a challenging task. This complexity can also result in difficulties

when scaling GATs for very large graphs, as their efficiency tends to

decrease with increasing graph sizes. Another potential issue with GATs is

their tendency to overfocus on certain graph areas, which can lead to

overlooking broader patterns or relationships within the graph.

132

In the context of anomaly detection, GATs offer a promising approach.

Anomaly detection involves identifying unusual or unexpected patterns in

data, and GATs are particularly adept at this task due to their ability to zoom

in on the most relevant parts of a graph. This capability is invaluable in areas

such as financial fraud detection or network security, where quickly

identifying deviations from normal patterns can be crucial. By concentrating

on key areas of a graph, GATs can effectively spot anomalies, making them a

valuable tool in various sectors.

In conclusion, Graph Attention Networks represent a significant step

forward in processing graph-structured data. Their precision and adaptability

to different data types are some of their key strengths. However, they are

not without challenges, as they require substantial computational power and

can struggle with large graph sizes. Despite these challenges, the potential

applications of GATs, particularly in anomaly detection, are vast and

promising. As research in this area continues to evolve, we can expect GATs

to become even more effective and versatile, enhancing their applicability

across various domains that rely on graph data analysis.

4.1.13.4 ChebNet (Spectral-based Graph Convolutional Network):

ChebNet, [38] a spectral-based Graph Convolutional Network, marks a

notable development in the realm of neural networks, particularly for

handling graph-structured data. This network, stemming from the broader

category of Graph Convolutional Networks (GCNs), utilizes spectral graph

theory to process data in graph form.

133

ChebNet's approach involves leveraging Chebyshev polynomials to

approximate graph Laplacians, enabling the network to capture the essence

of graph structures effectively. This method offers a unique way of

interpreting and analyzing data represented as graphs, making ChebNet

stand out in the field of graph-based neural networks.

One of the primary strengths of ChebNet is its ability to efficiently

encode graph topology into its learning process. By using Chebyshev

polynomials, ChebNet can effectively approximate graph Laplacians, allowing

it to capture the global structure of the graph. This capability makes

ChebNet highly effective in understanding complex graph patterns, which is

crucial for tasks involving large and intricate graph structures. Furthermore,

ChebNet's spectral approach allows for a more comprehensive analysis of

graph data, as it considers the overall structure of the graph rather than just

the local neighborhoods.

Despite these advantages, ChebNet also faces some challenges. One

significant limitation is its dependency on the fixed graph structure. This

reliance means that ChebNet struggles with dynamic graphs where the

structure changes over time. Additionally, the spectral approach used by

ChebNet can be computationally intensive, particularly when dealing with

large-scale graphs. This computational demand can make ChebNet less

practical for applications involving very large or rapidly evolving graph data.

Moreover, ChebNet's reliance on the entire graph's spectral properties can

limit its ability to generalize to graphs with different structures.

134

Figure 18. Diagram of CNN graph architecture as presented in the ChebNet

paper. [38]

In the area of anomaly detection, ChebNet offers a promising solution.

Anomaly detection, which involves identifying patterns in data that deviate

from the norm, can benefit greatly from ChebNet's ability to analyze the

overall structure of graphs. This global perspective enables ChebNet to

identify unusual patterns or outliers in graph data that might not be evident

when focusing solely on local neighborhoods. This capability is particularly

useful in scenarios like network security or fraud detection, where

understanding the entire graph's structure is crucial for spotting anomalies.

In summary, ChebNet represents a significant advancement in

graph-based neural networks, particularly due to its spectral approach to

graph convolution. Its strength lies in its ability to capture and analyze the

global structure of graphs, making it effective for tasks that require a

comprehensive understanding of graph data. However, its reliance on a fixed

135

graph structure and the computational intensity of the spectral approach

pose challenges, especially for dynamic or very large graphs. Despite these

limitations, ChebNet's potential in applications like anomaly detection is

considerable, offering a new perspective in identifying unusual patterns in

complex graph data. As research in this field continues, further

enhancements in ChebNet's design and functionality can be expected,

broadening its applicability and effectiveness in various graph-based data

analysis tasks.

4.1.13.5 Graph Isomorphism Network (GIN):

Graph Isomorphism Network (GIN), [39] a distinctive addition to the

landscape of graph neural networks, has garnered attention for its novel

approach to graph-structured data. As an evolution within the graph neural

network paradigm, GIN is designed to address a fundamental question: how

to effectively determine if two graphs are isomorphic, that is, structurally

identical. The GIN model achieves this by employing a unique architecture

that enables it to capture the intricate subtleties of graph structures more

effectively than traditional graph neural networks. [39]

136

Figure 19. GIN structure outline. [39]

One of the key strengths of GIN lies in its exceptional ability to discern

fine-grained structural differences between graphs. This capability stems

from its design, which closely aligns with the Weisfeiler-Lehman (WL) test of

graph isomorphism. By iteratively updating node representations in a

manner that preserves the graph's structural information, GIN can

effectively identify nuanced patterns and relationships within the graph. This

makes it particularly adept at tasks that require a deep understanding of

graph topology, such as chemical compound analysis or social network

studies.

However, GIN also encounters certain challenges. Its sensitivity to

structural nuances, while a strength, can also be a drawback. In scenarios

where the graph data is noisy or where small structural variations are not

significant, GIN's focus on fine details might lead to overfitting. Additionally,

like other graph neural networks, GIN can face scalability issues when

dealing with very large graphs, as the computational complexity increases

with the size and complexity of the graph.

137

In the context of anomaly detection, GIN offers intriguing possibilities.

Anomaly detection involves identifying unusual or unexpected patterns in

data, and GIN's ability to detect subtle structural differences makes it

well-suited for this task. For instance, in network security, GIN can be used

to identify unusual patterns in network traffic that might indicate a security

breach. Similarly, in financial fraud detection, GIN's capability to spot

atypical transaction patterns in financial networks can be invaluable.

In summary, Graph Isomorphism Network represents a significant step

forward in the field of graph neural networks. Its ability to closely mimic the

Weisfeiler-Lehman test for graph isomorphism enables it to capture detailed

structural information in graphs, making it highly effective for tasks requiring

intricate graph analysis. While it faces challenges such as potential

overfitting and scalability issues, its capabilities in applications like anomaly

detection are noteworthy. As research in this domain continues to evolve, we

can expect further advancements in GIN, enhancing its effectiveness and

broadening its range of applications in graph-based data analysis.

4.1.13.6 Message Passing Neural Network (MPNN):

Message Passing Neural Network (MPNN), [40] a significant model in

the realm of graph neural networks, has emerged as a powerful tool for

dealing with graph-structured data. MPNN stands out due to its unique

approach that centers around the concept of message passing. In this

framework, nodes in a graph send and receive messages to and from their

neighbors, and these messages are then used to update the nodes'

representations. This process, repeated over several iterations, allows the

138

network to learn rich and complex representations of the graph, capturing

both local and global structural information. [40]

Figure 20. Message Passing Neural Network experiment overview with

prediction on the “quantum properties of an organic molecule”. [40]

A major advantage of MPNNs is their flexibility in capturing various

graph properties. By allowing nodes to exchange information, MPNNs can

adaptively learn the features of each node based on its neighborhood,

leading to a more nuanced understanding of the graph structure. This ability

makes MPNNs particularly effective in tasks that require an understanding of

the relationships and interactions within a graph, such as molecular property

prediction or social network analysis. Additionally, the message-passing

framework can be tailored with different aggregation and update functions,

providing versatility in how the network processes the graph data.

However, MPNNs also have some limitations. One of the primary

challenges is their reliance on the local neighborhood structure. While this

139

focus on local information allows for detailed node-level analysis, it can

sometimes limit the network's ability to capture broader graph-wide

patterns. Moreover, MPNNs can struggle with scalability issues, particularly

when dealing with large graphs, as the message-passing process can

become computationally intensive. Additionally, there is a risk of over

smoothing, where the node representations become too similar, losing

valuable information about the graph's structure.

In the field of anomaly detection, MPNNs offer promising capabilities.

Anomaly detection involves identifying patterns in data that deviate from

expected norms, and the local neighborhood focus of MPNNs can be highly

effective in this regard. For instance, in detecting fraudulent activities in

financial networks, MPNNs can analyze transaction patterns at the node

level, identifying unusual behaviors that might indicate fraud. Similarly, in

network security, MPNNs can be used to monitor traffic at individual nodes,

spotting anomalies that could signify security threats.

In conclusion, Message Passing Neural Networks represent an

innovative approach in graph-based data analysis, with their

message-passing mechanism enabling detailed and adaptable learning from

graph structures. Their strength lies in their ability to learn complex node

representations based on neighborhood information, making them suitable

for a wide range of applications. However, challenges such as scalability and

potential over smoothing need to be addressed. Despite these limitations,

the application of MPNNs in areas like anomaly detection is particularly

promising, offering new ways to identify unusual patterns in complex graph

data. As the field progresses, we can anticipate further enhancements to

MPNNs, expanding their utility and efficiency in graph-based neural network

tasks.

140

4.1.13.7 Optimal Function Choice

Finding the best message/update functions can be challenging. Each

type of GNN has its strengths and weaknesses, and the best choice depends

on the specific problem and data at hand. We would say Graph Attention

Networks (GAT) would be the best choice from what we have seen so far

because of its ability to weigh different nodes differently, which can be

crucial for highlighting anomalies.

In the first phase of our project, we have gone through the steps of

setting up technologies and software in order to prepare for more of a

hands-on implementation of our ideas in the following semester of Senior

Design 2. Technologies that were necessary to set up for use: Wireshark,

Github repo with sponsor, Jira board, box for files, Pytorch libraries. Almost

all software was set up and ready to go for starting to get tangible products

that our sponsor requests of us.

As getting packets on a network is something that happens over time,

we did some research on graph neural network anomaly detection in time

series. The first thing that needed to be done is graph structured learning.

This is the learning stage of the graph neural network. This is what learns

the relationships between the nodes and encodes this relationship as the

edge. For this, a directed graph is given, the graph will not be created by the

neural net, but will be given by the researchers as this is a static graph.

The next thing is graph attention-based forecasting, where this

predicts what should happen in each node and what the edges should be

like. This is using a forecast, where the script will forecast what the node

141

should be doing at that time. A feature extractor is used to capture the

relationship between nodes.

The last step is to see the graph deviation scoring. This is known by

the fact that in the last step the neural net predicts the future, and if it

deviates it will be marked as an anomaly. Graph edges can be used to show

the connection between nodes, the greater the connection the larger the

weight of the edge.

We are taking Propagation Code Analysis Program data and using that

data to detect anomalies using Graph Neural Networks. There are different

architectures of GNNs and depending on the architecture of our Graph

Neural Networks will affect how we format our PCAP data as a graph.

One Graph Neural Network type architecture we can use is a Graph

Convolutional Network. It uses a multilayer perceptron like a Convolutional

Neural Network, meaning that it has layers of hidden states that it uses to

generate an output from input. But its hidden states on each layer

correspond to a node on the network and each node is represented by some

value. Each hidden state is equal to the ReLU of the summation of each

adjacent node in a function. This function is defined as the product of the

corresponding hidden state in the last layer multiplied by a weight that is

changed by backpropagation over the root of the product of the connected

nodes. The issue with this Graph Neural Network is that it doesn’t take into

account the properties of the edges other than the nodes that it connects.

A similar Graph Neural Network that is similar to Graph Convolutional

Networks in how it connects the different layers of the hidden states

between their corresponding adjacent nodes, Message-passing neural

networks are able to take into account edge properties. It has a hidden state

142

in each layer that corresponds to each of the nodes like in a Graph

Convolutional Network.

It accumulates the sum of the adjacent nodes by passing the previous

hidden layer of the current node and adjacent node along with the edge

properties between the corresponding node into a messenger function. It

then takes the sum returned from that messenger function and passes it into

the vertex update function along with the corresponding hidden state on the

previous layer. The messenger function acts as an accumulator and the

vertex update function acts like an activation function.

Like a Convolutional Neural Network input is fed into these hidden

states to generate a predicted value and if the model is training, this

predicted value is compared to the actual value and backpropagation

through the weights of the model to generate a value closer to the actual

value.

Another more modern Graph Neural Network is a Graph Transform

Network. This version, unlike the other two, is based on the principles of the

Transformer Model, which is typically used for Natural Language Processing.

instead of words it takes in nodes and optionally edges of graphs. Unlike

Transform Models in Natural Language Processing, the Graph Transform

Network in each of the attention heads compares each of the adjacent nodes

with the node that it is looking at and pools them into a sum.

143

This is template code for the Graph Convolutional Network which is a

step up from the random forest in the previous lines of code. The current

issue with its implementation is putting the pcap data into the form of nodes

and edges. The initial idea is to treat the ip addresses in the pcap data as

nodes and requests between them as edges. But there is the question of

how the data in the requests is going to be represented.The edges could be

given the properties of a pcap request, but there could be many requests

144

between two nodes. The best option that we can see is to have some kind of

meta data point to represent all the requests directionally between two

nodes. An example of this could be the number of requests made or the

average size of requests.

145

This is a template for what the sponsor wants as the end product. It is

a Graphic Neural Network that uses the pytorch geometric library. It takes in

a 2 dimensional tensor with two rows that represents the edges, the first

dimension represents where the edge starts and the corresponding position

in the 2nd row is where the edge goes. It takes in another 2-dimensional

tensor that represents the nodes. It is defined as the number of nodes by

the number of features in each node. Each row in the tensor is a

representation of each node.

4.1.14 Random Forest

The team decided to each implement the random forest model

individually and compare our results. We decided to use the

RandomForestClassifier function from the Scikit Learn library in Python to

train the model. Preliminarily, we achieved an accuracy of approximately

82% using all available features by splitting the data in our training file. It

was possible to split the data this way since all of our data is labeled. Our

results for each cyberattack category are shown below in the confusion

matrix.

146

Figure 21. Preliminary results on training dataset split.

After testing on the entire dataset (files 1-4 of the UNSW dataset), we

achieved an accuracy of 99.56 %. This dataset included 2,540,047 samples

and we used an 80/20 split for training and testing respectively. Our final

results for this data are shown in the figure below. We removed the features

srcip, sport, dstip, dsport, and st_ftp_cmd before training after our mentor

suggested removing the ip addresses and ports in order to reduce overfitting

on irrelevant features. The st_ftp_cmd variable was removed due to a mixed

data type issue that we hope to resolve as we continue using the random

forest models to perform feature importance analysis.

147

Figure 22. Final results on entirety of dataset.

Our sponsor suggested that we use our random forest model to

perform an analysis of the feature importance for each feature, in order to

discern which features to remove. This became especially important when

we began to train our neural network model to ensure that we achieve the

most accurate and unbiased results.

To be able to understand what we are doing and learn while trying to

complete this project, our sponsor told us to create a random forest, then a

convolutional neural network, then go into graph neural networks. We

created a random forest model using sklean with the UNSW dataset. This

yielded a result of 90% accuracy. This then led to me trying to understand

what is actually resulting in the checks in the random forest.

148

Talking to our sponsor, he wanted me to remove the IPs from the

source and destination, so that the random forest will give results on looking

at the data. It prompted me to explore the underlying features and

relationships beyond the obvious markers. We found that we had made

some errors sorting the data as we included the ids from the CSV.

The id just counts by one in each line. This and removing a few other

useless lines led to accuracy of 86% after also removing the IP addresses.

One good thing was that we only got false positives, all of the malicious

packets were found. Decreasing the false positive rate is the next part of

this. We am planning to write a script to remove rows to see how impactful it

will be to the accuracy of the random forest model.

We imported a training and test csv given by the sponsor to test our

neural network. We separated the label and attack cat for both datasets into

a y variable and we trained a random forest neural network using the

training csv set. We then used that model to predict the test set. By

inspecting the model we were able to look at what features were useful in

predicting values. This is important because we can remove the unimportant

features for later models to put more emphasis on the more important

features.

We also tried using the decision tree to test if it would do better and

get different feature importance. It got a slightly lower accuracy and it got

different feature importances.

149

We removed most of the features because of their low scores. It got a

.9 accuracy with most of the error being false negatives, showing that it

under predicted anomalies. The features that it prioritizes are not always the

most ideal in taking account, but are what the model thinks are the most

important. This is demonstrated in other models we ran where we kept

useless data in the dataset.

The models would make this useless data a priority, making the model

off by a significant amount. This means whether or not each of these

features should be used in later models should be tested to see if their

absence decreases performance in smaller easier to run models before using

them and finding out later.

150

We used the previous lines of code to process data from different files

so it could all be uniform. It was given in a format unfit to be turned into a

151

pandas dataframe because it didn’t have the names of the columns in the

top row. So, we had to read from a file that had all the column names and

assign each of the columns to the corresponding feature name. We also had

to fix the data, because different files had different types for the columns, or

they had spaces in some of the values but didn’t have spaces in other

corresponding values in other files.

This code runs random forest and tests it on multiple csv files that

were created with the last lines of code. It takes in csv files and puts them

through a data prep function which returns an X variable and a y variable,

the X variable is used by the model to test against the y variable through

152

backpropagation. It also drops a lot of the X values that are not supposed to

be there because it causes the model to cheat or underperform.

We train the model using one CSV file then we use it to test on three

other CSV files. We then feed the results into a sklearn to get a confusion

matrix to see where it is failing. We also print out the features it is using to

see what the model considers is important, which affects what we focused

on for later models.

4.1.15 One Hot Encoding

Our sponsor recommended that we use one hot encoder for one of the

tasks in our project and since we are unfamiliar with the topic we researched

in order to get a foundation and how we could apply it.

Feature encoding is essential in transforming raw data into a format

that machine learning models can process. The one-hot encoder is

particularly significant in this transformation. It converts categorical

variables into a binary matrix representation, enabling algorithms to better

understand and predict based on these features.

One-hot encoding involves creating a binary column for each category

of a variable. The presence of a category in an observation is marked by '1',

while '0' denotes its absence. This method effectively removes the ordinal

relationship inherent in numerical encoding, which might not be relevant for

all categorical variables.

For instance, consider a dataset with a categorical feature 'Color'

having values 'Red', 'Blue', and 'Green'. One-hot encoding will create three

153

new columns, 'Color_Red', 'Color_Blue', and 'Color_Green', each

representing one of these possibilities. [41]

Figure 23. An example of features before and after one-hot encoding. [41]

In our GNN-based anomaly detection project, one-hot encoding plays

a pivotal role. The network dataset comprises nodes and edges with

categorical attributes, such as types of nodes and relationships. One-hot

encoding these attributes allows the GNN to process and learn from these

features more effectively.

One challenge encountered was the computational cost associated with

encoding a large number of categories, which was mitigated through

dimensionality reduction techniques without significantly losing information.

The incorporation of one-hot encoding significantly enhances the

GNN's ability to detect anomalies. By accurately representing categorical

features, the GNN can discern patterns and deviations more effectively.

Preliminary results have shown a marked improvement in the model's ability

to identify anomalies in network data.

154

One-hot encoding is a simple yet powerful technique that plays a

crucial role in the preprocessing of data for anomaly detection using GNNs.

Through effective encoding of categorical variables, GNNs can better

understand and learn from the dataset, leading to more accurate anomaly

detection.

4.2 Design Summary

In summary, Graph Neural Networks provide value in the sense that

knowledge can be gathered about a specific node’s neighbors. Through

multiple layers, this data is accumulated so that a node contains not only

information about itself but many of its connections. With GNNs for network

anomaly detection being a relatively new field, there is limited research in

the node and edge anomaly detection and our group looks to provide new

insights for dynamic or static graphs.

4.3 Design Description

4.3.1 Tools

4.3.1.1 VS Code

Our preferred Integrated Development Environment (IDE) for this

project is Visual Studio Code. VSCode has a large array of plugins that can

significantly improve our development workflow. With the use of VSCode and

Github, it allows us to enhance productivity and collaborate seamlessly in

this project.

155

4.3.1.3 Github

Our code is hosted using GitHub, an open-source platform for

version control. GitHub allows for collaborative coding by hosting a git

repository that can be cloned by all team members to develop on their local

environment.

One of the main features of GitHub that is new to all team members is

GitHub Enterprise. GitHub Enterprise allows you to be a part of an

organization and collaborate with other organization members. This means

that instead of working strictly on one project, organization members can

collaborate on multiple projects at a time. Due to our sponsor’s affiliation

with the Georgia Tech Research Institute (GTRI), all team members were

granted an enterprise account to connect with other GTRI members. Two of

the repositories set up for the project are our Resources repository and our

Random Forest Pipeline repository. Having both of these under the same

scope with GitHub enterprise makes collaborative work much easier.

In order to reach our goal product, we need to heavily test our code

and can leverage GitHub Actions to do so. GitHub Actions allows users to

define some workflow and then perform it based on some trigger. Although

most group members have experience with Continuous Integration and

Continuous Deployment, it was with other platforms such as Buildkite or

Jenkins. We look to explore GitHub actions when pushing code that is going

to be heavily used in our network simulation to GNN pipeline. Aside from

testing, we can ensure that we are always using the latest simulation

pipeline code for Pacific Northwest National Laboratories by cloning the latest

version before running a simulation.

156

A feature of GitHub that was initially requested by our sponsor was

GitHub issues. GitHub issues allow developers to track their progress and

connect their tasks to pull requests. We decided to use Jira instead of GitHub

issues for this project.

4.4 Production Plan

Once we completed our literature review process, we needed to

brainstorm any extensions to this paper that can improve the neural

network. During this process, we needed to plan our own Graph Neural

Network in detail and come up with an outline of what we will expect to get

accomplished for the next semester. This includes code to be written and

what experiments we plan to perform and run. The following production plan

outlines the goals our team planned for Senior Design 2 during our Senior

Design 1 semester. Some of these goals needed to be adjusted as we ran

into different challenges with implementation and experimentation.

It is one of my team’s goals to have this simulation running within the

next month. This will give us the opportunity to inspect our data and make

important design decisions based on the problem scope. Our planning should

be done by the end of the semester.

Since we do not have enough background knowledge yet to begin

programming our Graph Neural Network, we planned with our sponsor to

use some basic models in order to get an overview of the problem in the

meantime. As previously mentioned, each group member has individually

coded up and trained a random forest model. We are beginning to compare

157

our results and planning to use the random forest to perform a preliminary

feature importance analysis.

This will help us to gain more accurate results on the random forest

model, as well as the traditional neural network model. Our neural network

model will most likely consist of a traditional multilayer perceptron network,

and our sponsor has requested that this (along with our GNN) be coded

using the Pytorch library [20][42]. The group will begin working together on

the neural network model and we plan to present our results to our sponsor

at the end of the semester.

Following the completion of these initial steps, the subsequent phase

involves delving into the practical implementation of the Graph Neural

Network (GNN) and rigorously testing our model. This critical stage not only

allows us to validate the efficacy of our approach but also provides valuable

insights into the performance of the GNN in the context of our senior design

project. At the end of the senior design project, we should have a report or

paper written about our final results. As a stretch goal, it would be a

fantastic opportunity for our entire team to turn our project into a published

paper or part of a paper with the help of our sponsor.

4.5 Setup and Running Instructions

The project source code is stored in the GitHub repository

https://github.gatech.edu/GTRI-UCF-Senior-Project-2023-2024/UNSW-exper

iments along with detailed documentation, setup, and running instructions.

This repository is currently private within the Georgia Tech organization, but

we are working with our sponsor to make this information public.

158

https://github.gatech.edu/GTRI-UCF-Senior-Project-2023-2024/UNSW-experiments
https://github.gatech.edu/GTRI-UCF-Senior-Project-2023-2024/UNSW-experiments

5. Conclusions

5.1 Characterization of Results

In our initial phase we took a deep dive into the dataset, and gained a

strong understanding of the nuances and potential implications for anomaly

detection. We identified important features and patterns that would classify

specific anomalies. The process helped determine preprocessing steps

needed to make the data be able to be used in our code/scripts. It was also

helpful in becoming more familiar with the data overall.

One task provided by our sponsor that we have completed is creating

a PyShark script that transforms Packet Capture files into a structured

comma separated-value format. This script is an important component of the

data pipeline we are using. It allows us to convert raw network traffic data

into a format that we can read as well as be used by machine learning

models that we are also using for our network. The script extracts the key

features we need efficiently which makes sure that our models have relevant

and clean inputs.

After understanding our data and its features we started to develop

models that will help build a foundation, starting with the creation of random

forest models. These models serve as an initial testing environment by

providing us with a baseline understanding of the predictive potential of the

data we are using. We trained the random forest models on our

preprocessed dataset, and we were provided with initial insights in the

behavior of the data and highlighted potential areas of focus for the graph

neural network. Although the results from these models were preliminary

159

they still provided value by demonstrating the usefulness of machine

learning for anomaly detection in network data.

Another important component in our project that we were able to

handle was establishing computational infrastructure. We have successfully

set up a Docker environment, which allows us to run simulations in a

consistent and isolated setting, as our project grows we were able to scale

our project however we needed. This environment has many other

advantages, like streamlining the process of managing different

dependencies and system configurations, which will get rid of the need to set

up multiple development environments. Most importantly setting up Docker

helps ensure control and consistency by allowing our group members to

collaborate seamlessly.

Along with the extensive amounts of research put into understanding

topics relating to our project during the first semester of senior design, we

have successfully obtained results on the UNSW (CITE) dataset using a

Graph Neural Network with the GraphSAGE implementation to predict attack

presence and category with an accuracy of approximately 98% on average

over multiple training sessions. We have obtained results for not only a

model that categorizes between attacks and non-attacks, but also a model

that will categorize attack type. Our results from this project have served as

a proof of concept that Graph Neural Networks are a suitable option to use

for anomaly detection on the cybersecurity problem domain.

Over the course of this project, our team learned a lot about not only

GNNs, but also about project management, research collaboration, and the

AI development process. It is our hope, along with our sponsor, that future

senior design groups will continue this work and add to our work. Some

160

options for future development include creation of a novel GNN, improving

our GNN performance by tweaking hyperparameters, testing on the

simulation data, integrating the data pipeline into one application, and

providing an informative front-end GUI.

Figure 24. An illustration of accuracy results for our initial GNN model.

161

Figure 25. An illustration of accuracy during training for our final GNN model.

Note: We saved and tested the model with best accuracy over all epochs of

training.

Figure 26. An illustration of loss during training for our final GNN model.

162

5.2 Summary of Project

In order to implement the Graph Neural Network we used the

pytorch-geometric library. This library uses tensors to represent the node

and edges of the graph. Tensors are multi-dimensional arrays that have

easier numerical computation in the GPU when compared to normal

multi-dimensional arrays, making them ideal for neural networks due to the

large amount of computations needed to train and run the model.

Edges are represented by two tensor arrays, the first array

representing from what node and the second array representing to what

node the edge is going. Nodes are represented as a two dimensional array,

the first dimension representing the nodes and the second dimension

representing features. The library can also represent multiple types of nodes

through a dictionary of node tensors, the types of nodes differing in the

amount of features that they each respectively have

The first step in implementing a Graph Neural Network using the

pytorch-geometric library is formatting the packet capture (pcap) data in

such a way that it can fit in a graph. The main issue with this is that there

are many ways in which this can be done, and this greatly affects the

effectiveness of the Graph Neural Network. The most intuitive solution to this

could be to have the nodes represent IP addresses and the edges represent

data being shared between the IP addresses.

The properties of the edges between nodes cannot be the same as the

packet capture data because there can be many requests made between two

163

nodes, so the properties of the edges between two nodes must be able to

represent many requests.

The Graph Neural Network would predict what IP addresses are

producing anomalies using node classification. The program would then mark

any of the packet captures as anomalies that share an IP address with the

nodes that the Graph Neural Network determined to be anomalies.

Overall, our minimum viable product for this project is to apply a

graph neural network to the problem of cybersecurity attack in the United

States Smart Power Grid using simulated data. As previously mentioned, our

group has been working up to this goal by taking a look at the existing

research in this area. We have also taken steps towards this goal by

analyzing a preexisting, simpler dataset which does not require us to

simulate it. This preliminary analysis has been done using some simple

models in various python libraries. By becoming familiar with this type of

data and the data formats, we will be able to make more informed decisions

about the structure of our final graph neural network product.

As our final goal, our group would like to create an extension on a

preexisting graph neural network structure, improving on the state of the art

and adding to existing literature. Our coding work would most likely involve

a reproduction of some previous model and a modification of this program in

order to create a new and improved type of graph neural network model.

This will be tested on simulated data, using a state of the art simulation

provided by our sponsor.

Our stretch goal is to produce an academic paper on the topic of graph

neural networks from the perspective of a smart power grid cybersecurity

attack. This would involve testing our code, comparing it to the state of the

164

art, and composing a solid analysis of our findings, adding to the current

academic literature on the topic of graph neural networks.

165

6. Administration

6.1 Expectation Outline

Each team member is expected to attend every meeting with

exceptions to erroneous circumstances. All the members should be expected

to do similar amounts of work and be accountable for their work. All other

members should check other members' work. Meetings will start by taking

attendance, and a member will write the meeting minutes. The chosen

member will be in a rotation per meeting. The members of the group should

motivate each other to get through the project.

For communication, we will be using Discord primarily. On the discord,

we have created multiple channels to talk about specific topics. This makes it

organized so that we go back and look at our research.

During the Literature Review, each team member is expected to read

all of the papers included in our Literature Review. Each team member is

expected to be able to use GitHub proficiently. They are also expected to

make push requests at regular intervals.

Our sponsor has requested that we name a team captain and that our

team not use Agile Methodology. We have decided together that Emily

Hannon will be the team captain. This role will be a responsibility in addition

to the rest of the project. The team captain will be responsible for ensuring

that the team agrees on meeting times, deadlines, and assigned work and

for communicating effectively with the sponsor.

Instead of using Agile Methodology, our team structure will resemble a

more traditional structure of a research team. Our sponsor will preside over

our group meetings as our research mentor and the rest of the team will be

166

expected to contribute to the project as equals. Each team member will be

expected to contribute the same amount of work (writing, code, background

reading, etc.) during the entirety of our project.

In terms of accountability, we will show leadership qualities to our

other team members in order to set a good example. We will understand

each other’s capabilities and knowledge to set clear expectations.

As our project mainly focuses on research, most of the first semester

will be spent learning and understanding our project as well as where other

projects have fallen short. Communication will happen over our team Discord

channel. When it comes to implementation and coding, we plan on using a

Discord bot to automate the process of our daily standup. This will allow us

to have transparency and effective communication on a frequent basis.

There will always be a due date/time for tasks so that all team

members will know when something is going to be due. All coding

deliverables must be pushed to our GitHub by the due date/time in order to

be considered complete.

It is important to outline the difference between a lack of

understanding and a lack of effort. In the case that someone is lacking

understanding, we will make an effort as a team to communicate with them

and provide them resources to learn. This will not require any further action

because we are all here to learn. If someone is constantly putting in

significantly less effort than expected, everyone else on the team will have a

talk with them and outline specific expectations moving forward. We plan on

talking to Leinecker and/or Gerber and then move to our sponsor if the

behavior does not change.

167

To prepare for unexpected circumstances that impact a member's

ability to complete their task, communication will be a requirement. When it

comes to progress in a deliverable, code, etc. each member will know where

everyone is at in their respected task. This will allow the team to decide how

they will adjust to remedy the situation in the event of a member having an

unavoidable issue that places a halt in their ability to contribute to their goal.

If this does happen, the team will create a plan to work around the

problem and decide what needs to be done. Whether it comes to a different

member filling in to complete a necessary deliverable, or multiple members

working together, the team will come together to discuss a plan on how to

proceed. Relative to the emergency, the team will decide if we need to

contact our TA’s, Professors, and Sponsor in order to communicate the issue.

In the case of team conflicts, each member will be expected to

communicate with the team if it cannot be resolved and come together as

one. All voices will be considered when an issue occurs, and the main goal

will be to handle the situation as quickly and respectfully as possible.

Ensuring that no bad blood lingers will be paramount in continuing to have

strong team dynamics throughout the project. As before, if the conflict

cannot be resolved by the team, the team will decide if we need to contact

our TA’s, Professors, and Sponsor in order to resolve the issue.

Finally, if a team member is consistently unable to deliver the

agreed-upon set of deliverables, the team will meet to reassess

responsibilities carried by individual team members and the team as a whole

following the interest of the team and project.

168

6.2 Product Backlog

Item ID Task Priority Status

GNN-2 PCAP Parsing Medium Done

GNN-3 UNSW CSV Files Analysis High Done

GNN-4 Random Forest on UNSW High Done

GNN-5 Supervised Neural Network

on UNSW

High In Progress

GNN-7 Run data simulation for

NATIG dataset

Medium To-Do

GNN-8 Setup Docker Sim

Environment

Medium Done

GNN-9 Integrate Docker with

PCAP

Low To-Do

GNN-13 Sim PCAP Random Forest Low To-Do

169

6.3 Milestones

Milestone Description Responsibilities Date

First Group

Meeting

Introductions and

discussed plans for

the project.

All team

members

9/29/2023

First Sponsor

Meeting

Went over hosting

and starting

resources.

All team

members

9/29/2023

Design Proposal

and Team

Contract

Wrote our individual

thoughts regarding

the project and

reviewed team

expectations.

All team

members

10/6/2023

Graph Neural

Networks

First lesson on GNNs.

Drew diagrams to

explain the concept

of message parsing.

Team discussion

led by Santiago

Rodriguez

10/6/2023

TA Check-In #1 Went over how to

work on a project

All team 10/13/2023

170

that is more research

than development.

Discussed how to

designate team roles.

members

Initial Jira Setup Added stories to our

Jira under Epics.

Explained Jira to

other unfamiliar

members.

Emily Hannon 10/16/2023

UNSW

Experiments

GitHub Repo

Created

Created a repository

within Georgia Tech

Research Institute

(GTRI) GitHub

enterprise to host our

Random Forest and

basic neural network

code.

Emily Hannon 10/16/2023

Initial Random

Forest

Wrote Python code

on Random Forest

with 95% accuracy to

perform the binary

classification of

Nicholas Lannon 10/23/2023

171

whether an attack

occurred based on

packet data.

Check-In with

Leinecker

Went over project

updates. Discussed

the application of Jira

and Agile on a

research-heavy

project.

All team

members

10/23/2023

Docker

Simulation

Environment

Setup

Set up a simulation

environment with

Docker from NATIG

Repo. This

environment lets us

gather simulated

packet data.

Mukundh

Vasudevan

11/8/2023

Autoencoder Wrote an

autoencoder in

Python to perform

the same task as the

Random Forest. If an

attack is predicted,

Gustavo Nazario

Perez

11/12/2023

172

this will trigger a

Random Forest model

to predict the attack

type.

PCAP Parser Wrote a script using

pyshark to parse

packet data and

convert it to a CSV

file. This will be used

in our final Graph

Neural Network

pipeline.

Landon Russell 11/15/2023

TA Check-In #2 Discussed status of

final design

document and the

short and long-term

goals of the project

heading.

All team

members

11/17/2023

6.4 Finances

There is no budget allocated to this project as there are no necessary

expenses. Our group plans to utilize the Newton cluster at UCF [43] in the

173

case where any additional computational resources are required. This may

be necessary for running the simulated data from the Network Attack

Testbed in [Power] Grid simulation. [3]

7. Acknowledgements

7.1 Sponsor Assistance

The sponsor for this project is Branden Stone, a Research Scientist at

Georgia Tech Research Institute. His research revolves around developing

original artificial intelligence and machine learning technologies. The team

and sponsor met on a weekly basis. Mr. Stone constantly provided the team

with the necessary resources to succeed. Some of these resources include

Papers With Code and a Graph Representation Learning Book [10]. He

allowed the team to ask questions whenever they needed to about anything

related to the project.

174

7.3 Bibliography

[1] H. Kim, B. S. Lee, W. -Y. Shin and S. Lim, "Graph Anomaly Detection

With Graph Neural Networks: Current Status and Challenges," in IEEE

Access, vol. 10, pp. 111820-111829, 2022, doi:

10.1109/ACCESS.2022.3211306.

[2] Oceane Bel, Joonseok Kim, William J Hofer, Manisha Maharjan, Sumit

Purohit, & Shwetha Niddodi. (2023). Co-Simulation Framework For

Network Attack Generation and Monitoring.

[3] Moustafa, Nour. Designing an online and reliable statistical anomaly

detection framework for dealing with large high-speed network traffic.

Diss. University of New South Wales, Canberra, Australia, 2017.

[4] U.S. Department of Energy, Office of Electricity. (2019, December 16).

Smart Grid: The smart grid. Smart Grid: The Smart Grid |

SmartGrid.gov.

https://www.smartgrid.gov/the_smart_grid/smart_grid.html

[5] United States Government. (2016). (rep.). Cyber Threat and

Vulnerability Analysis of the U.S. Electric Sector. Retrieved November

2023, from

https://www.energy.gov/policy/articles/cyber-threat-and-vulnerability-

analysis-us-electric-sector.

[6] United States Government. (2023, October 20). Frequently asked

questions (faqs) - U.S. energy information administration (EIA).

Frequently Asked Questions (FAQs) - U.S. Energy Information

175

https://www.smartgrid.gov/the_smart_grid/smart_grid.html
https://www.energy.gov/policy/articles/cyber-threat-and-vulnerability-analysis-us-electric-sector
https://www.energy.gov/policy/articles/cyber-threat-and-vulnerability-analysis-us-electric-sector

Administration (EIA).

https://www.eia.gov/tools/faqs/faq.php?id=108&t=3#:~:text=In

%202022%2C%20U.S.%20electric%20utilities,electric%20meters%20

were%20AMI%20meters

[7] U.S. Energy Information Administration. (2022). Advanced Metering

Count by Technology Type. SAS output.

https://www.eia.gov/electricity/annual/html/epa_10_05.html

[8] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M.

Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain

Dunning, Karen Simonyan, Chrisantha Fernando, & Koray

Kavukcuoglu. (2017). Population Based Training of Neural Networks.

[9] A. Daigavane, B. Ravindran, and G. Aggarwal, “Understanding

Convolutions on Graphs,” Distill, vol. 6, no. 9, p. e32, Sep. 2021, doi:

10.23915/distill.00032.

[10] Faroz, S. (2022, September 14). Geometric deep learning with graph

neural network. Medium.

https://salmanfaroz.medium.com/geometric-deep-learning-with-graph

-neural-network-ace43692622f

[11] Hamilton, W. L. (2020). Graph Representation Learning. Springer

International Publishing. https://doi.org/10.1007/978-3-031-01588-5

[12] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. B. Wiltschko, “A

Gentle Introduction to Graph Neural Networks,” Distill, vol. 6, no. 9, p.

e33, Sep. 2021, doi: 10.23915/distill.00033.

176

https://www.eia.gov/tools/faqs/faq.php?id=108&t=3#:~:text=In%202022%2C%20U.S.%20electric%20utilities,electric%20meters%20were%20AMI%20meters
https://www.eia.gov/tools/faqs/faq.php?id=108&t=3#:~:text=In%202022%2C%20U.S.%20electric%20utilities,electric%20meters%20were%20AMI%20meters
https://www.eia.gov/tools/faqs/faq.php?id=108&t=3#:~:text=In%202022%2C%20U.S.%20electric%20utilities,electric%20meters%20were%20AMI%20meters
https://www.eia.gov/electricity/annual/html/epa_10_05.html
https://salmanfaroz.medium.com/geometric-deep-learning-with-graph-neural-network-ace43692622f
https://salmanfaroz.medium.com/geometric-deep-learning-with-graph-neural-network-ace43692622f
https://doi.org/10.1007/978-3-031-01588-5

[13] William L. Hamilton. 2020. Graph Representation Learning Book. Mcgill

University.

[14] Yulia Kosarenko. (2021). How To Create Decision Trees for Business

Rules Analysis. Why-change.

https://why-change.com/2021/11/13/how-to-create-decision-trees-for

-business-rules-analysis/

[15] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to Tensor

Decompositions and their Applications in Machine Learning.” arXiv,

Nov. 29, 2017. doi: 10.48550/arXiv.1711.10781.

[16] X. Ouvrard, J.-M. L. Goff, and S. Marchand-Maillet, “Adjacency and

Tensor Representation in General Hypergraphs Part 1: e-adjacency

Tensor Uniformisation Using Homogeneous Polynomials.” arXiv, May

30, 2018. Accessed: Nov. 28, 2023. [Online]. Available:

http://arxiv.org/abs/1712.08189

[17] S. Zhou, Q. Tan, Z. Xu, X. Huang, and F. Chung, “Subtractive

Aggregation for Attributed Network Anomaly Detection,” in Proceedings

of the 30th ACM International Conference on Information & Knowledge

Management, in CIKM ’21. New York, NY, USA: Association for

Computing Machinery, Oct. 2021, pp. 3672–3676. doi:

10.1145/3459637.3482195.

[18] L. Huang et al., “Hybrid-Order Anomaly Detection on Attributed

Networks,” IEEE Trans. Knowl. Data Eng., pp. 1–1, 2021, doi:

10.1109/TKDE.2021.3117842.

[19] Singh, P., P, J. J., Pankaj, A., & Mitra, R. (2021). Edge-detect:

Edge-centric network intrusion detection using Deep Neural Network.

177

https://doi.org/10.48550/arXiv.1711.10781
http://arxiv.org/abs/1712.08189
http://arxiv.org/abs/1712.08189

2021 IEEE 18th Annual Consumer Communications &amp;

Networking Conference (CCNC).

https://doi.org/10.1109/ccnc49032.2021.9369469

[20] Pyg Documentation. PyG Documentation - pytorch_geometric

documentation. (n.d.).

https://pytorch-geometric.readthedocs.io/en/latest/

[21] Grubbs, F. E. (1974). Procedures for detecting outlying observations in

samples. Defense Technical Information Center.

[22] Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q. Z., Xiong, H.,

& Akoglu, L. (2023). A comprehensive survey on graph anomaly

detection with deep learning. IEEE Transactions on Knowledge and

Data Engineering, 35(12), 12012–12038.

https://doi.org/10.1109/tkde.2021.3118815

[23] Z. Zhang, Y. Li, W. Wang, H. Song, and H. Dong, “Malware detection

with dynamic evolving graph convolutional networks,” Int. J. Intell.

Syst., vol. 37, Mar. 2022, doi: 10.1002/int.22880.

[24] Sanderson, “But what is a Neural Network?” Accessed: Oct. 27, 2023.

[Online]. Available:

https://www.3blue1brown.com/lessons/3blue1brown.com

[25] Representations for Social Recommendation School of Computer

Science and Engineering, Sun Yat-sen University, Guangzhou, China

[26] Maxim Liu. (2021). What is the Autograd? Pytorch Design Patterns

Explained(1) - Autograd. Medium.

178

https://doi.org/10.1109/ccnc49032.2021.9369469
https://pytorch-geometric.readthedocs.io/en/latest/
https://doi.org/10.1109/tkde.2021.3118815
https://www.3blue1brown.com/lessons/3blue1brown.com

https://maximliu-85602.medium.com/what-is-the-autograd-pytorch-d

esign-patterns-explained-1-autograd-5320cbed8cb3

[27] Guatam Ethiraj. (2022). What is nn.Embedding Really?. Medium.

https://medium.com/@gautam.e/what-is-nn-embedding-really-de038b

aadd2

[28] Yulia Kosarenko. (2021). How To Create Decision Trees for Business

Rules Analysis. Why-change.

https://why-change.com/2021/11/13/how-to-create-decision-trees-for

-business-rules-analysis/

[30] Bhuvaneswari Gopalan. (2020). What is Gini Impurity? How is it used

to construct decision trees? Numpyninja.

[31] Viswateja. (2019). Measure of Impurity. Medium.

https://medium.com/@viswatejaster/measure-of-impurity-62bda86d8

760

[32] Carbonati. (2016). Random Forest From Scratch. GitHub.

https://carbonati.github.io/posts/random-forests-from-scratch/

[33] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph Convolutional

Networks: A Comprehensive Review,” Computational Social Networks,

vol. 6, no. 1, p. 11, Nov. 2019, doi: 10.1186/s40649-019-0069-y.

[34] How powerful are graph convolutional networks?. Thomas Kipf. (n.d.).

https://tkipf.github.io/graph-convolutional-networks/

[35] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation

Learning on Large Graphs.” arXiv, Sep. 10, 2018. doi:

10.48550/arXiv.1706.02216.

179

https://maximliu-85602.medium.com/what-is-the-autograd-pytorch-design-patterns-explained-1-autograd-5320cbed8cb3
https://maximliu-85602.medium.com/what-is-the-autograd-pytorch-design-patterns-explained-1-autograd-5320cbed8cb3
https://medium.com/@gautam.e/what-is-nn-embedding-really-de038baadd2
https://medium.com/@gautam.e/what-is-nn-embedding-really-de038baadd2
https://why-change.com/2021/11/13/how-to-create-decision-trees-for-business-rules-analysis/
https://why-change.com/2021/11/13/how-to-create-decision-trees-for-business-rules-analysis/
https://medium.com/@viswatejaster/measure-of-impurity-62bda86d8760
https://medium.com/@viswatejaster/measure-of-impurity-62bda86d8760
https://carbonati.github.io/posts/random-forests-from-scratch/

[36] Ahmed, F., Cui, Y., Fu, Y., & Chen, W. (2021). A Graph Neural Network

Approach for Product Relationship Prediction. ArXiv, abs/2105.05881.

[37] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., & Bengio,

Y. (2017). Graph Attention Networks. ArXiv, abs/1710.10903.

[38] Michaël Defferrard, Xavier Bresson, & Pierre Vandergheynst (2016).

Convolutional Neural Networks on Graphs with Fast Localized Spectral

Filtering. CoRR, abs/1606.09375.

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, & Stefanie Jegelka (2018). How

Powerful are Graph Neural Networks?. CoRR, abs/1810.00826.

[40] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, &

George E. Dahl (2017). Neural Message Passing for Quantum

Chemistry. CoRR, abs/1704.01212.

[41] Dansbecker. (2018, January 22). Using categorical data with one hot

encoding. Kaggle.

https://www.kaggle.com/code/dansbecker/using-categorical-data-with

-one-hot-encoding

[42] PyTorch. (n.d.). https://pytorch.org/

[43] About Newton. Home. (2023, September 24).

https://arcc.ist.ucf.edu/index.php/resources/newton/about-newton

180

https://www.kaggle.com/code/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/code/dansbecker/using-categorical-data-with-one-hot-encoding
https://pytorch.org/

